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ABSTRACT: MAX phases are layered ternary carbides or nitrides that are attractive for
catalysis applications due to their unusual set of properties. They show high thermal
stability like ceramics, but they are also tough, ductile, and good conductors of heat and
electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support
for molybdenum oxide for the reverse water−gas shift (RWGS) reaction, comparing this
new catalyst to more traditional materials. The catalyst showed higher turnover frequency
values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic
properties of the Ti3AlC2 support. We observed a charge transfer effect from the
electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the
reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2
catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.
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■ INTRODUCTION

There is a global interest on reducing anthropogenic CO2
emissions into the atmosphere.1,2 The main sources of CO2 are
power generation and manufacturing, which emitted 12.4 and
3.9 Gt of CO2 in 2015.3,4 However, CO2 is a valuable C1
feedstock that should not be thrown away. After CO2 capture,
either from the atmosphere or from industrial flue gases, it
should be efficiently converted into high value-added products
via catalytic processes.5−8

The reverse water−gas shift (RWGS) reaction (eq 1) using
renewable hydrogen is a sustainable way for converting CO2.

9

This reaction produces CO, a basic building block for a variety
of valuable chemicals and fuels, such as methanol, paraffins,
and olefins.10 However, RWGS is an equilibrium-limited
reaction, favored at high temperatures (>700 °C) because it
is endothermic.11 At lower temperatures, the exothermic CO
methanation (eq 2) and Sabatier reaction (eq 3) also take
place, consuming a substantial amount of H2 and producing
undesired methane. Therefore, catalyst development is focused
on improving the catalytic performance at <500 °C.12,13
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Traditionally, RWGS catalysts are based on Cu, Pt, and Rh
nanoparticles supported on metal oxides (Al2O3, TiO2, and
CeO2, among others).9,14,15 Molybdenum is more abundant
and cheaper than precious metals, increasing the potential for
the large-scale industrial application of Mo-based catalysts.
While previous work only focused on its promoting effect,16−20

we are interested in molybdenum oxide as an active phase itself
due to its redox properties.21,22 The oxygen vacancies created
when reducing MoO3 will affect the reaction performance,
whether it takes place via the redox mechanism (where CO2
adsorbs and dissociates on the reduced sites previously created
by H2) or via the associative pathway (where oxygen vacancies
can stabilize adsorbed carbon-containing intermediates), see
Figure 1.10,23,24

Another important factor is the choice of support. Although
typically inert, supports can enhance the reaction performance
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by increasing the active sites’ dispersion, facilitating charge
transfer, and modifying the morphology of the supported
particles.25−27 More importantly, the support can prevent
catalyst deactivation and boost the industrial application of
high-temperature reactions.26 Here, we explored a new type of
supports, MAX phases, and their application in catalysis. MAX
phases (Mn+1AXn) are a group of layered ternary carbides or
nitrides, where M is an early transition metal, A is an element
mostly from groups 13 and 14, X is carbon or nitrogen, and n =
1, 2, or 3.28 MAX phases stand out by their unusual set of
properties. They are stiff and high-temperature shock resistant
like ceramics, but they are also tough, ductile, and good
conductors of heat and electricity like metals.29−31 They are
typically used in mechanical and thermal applications, such as
high-temperature structural components and protective coat-
ings.32−34 Their potential as catalysts has recently emerged, as
we reported the activity and improved selectivity of the
Ti3AlC2 MAX phase during butane oxidative dehydrogen-
ation.35 We also showed that MAX phases are promising
supports for CO2 conversion reactions.36 The thermal stability
and acid−base properties of the Ti2AlC MAX phase increased
the stability and coking resistance of a Co3O4/Ti2AlC catalyst
during dry reforming of butane.36 Elsewhere, Trandafir et al.
recently showed the potential of Pd/Ti3SiC2 as a chemo-
selective catalyst in the hydrogenation of functionalized nitro
derivatives.37

Here, we use for the first time the Ti3AlC2 MAX phase as a
support for molybdenum oxide RWGS catalysts. We study the
properties and the RWGS activity of the MoO3/Ti3AlC2

catalyst and compare it to titania and alumina-based catalysts.

■ EXPERIMENTAL SECTION
Materials and Instrumentation. X-ray diffraction (XRD)

patterns were recorded on a MiniFlex II X-ray diffractometer,
described previously by Ronda-Lloret et al.36 X-ray photoelectron
spectroscopy (XPS) was performed using a K-α spectrometer from
Thermo Scientific (Al−K radiation), with a source of electrons and
ions for automated charge balancing. The binding energies were
referenced to the C 1s line at 284.6 eV, with an accuracy of ±0.2 eV
(a detailed description of the analysis procedure is published
elsewhere36).

Thermogravimetric analysis (TGA) was carried out using an
NETZSCH Jupiter STA 449F3 instrument, under air (20 mL·min−1,
O2:N2 mixture) between 30 and 1000 °C.

Scanning transmission electron microscopy (STEM) spectra
combined with high-angle annular dark field (HAADF) images were
obtained using a double Cs aberration-corrected FEI Titan3 Themis
60−300 microscope (operated at 200 kV).

We performed X-ray absorption spectroscopy (XAS) using the
SuperXAS beamline of the SLS Synchrotron at the PSI (Switzerland).
We prepared the samples by mixing with cellulose and pressing into
pellets of approximately one absorption length in thickness. We
performed the measurements at the Mo K-edge (20,000 eV) in the
QEXAFS mode using an oscillating monochromator and collected
spectra with a fluorescence detector (sensor silicon drift detector) and
with a transmission detector (ionization chambers) simultaneously. A
spectrum was recorded every second and averaged over 1 min to
improve the signal-to-noise ratio. We calibrated with respect to the
edge position of a metal foil measured simultaneously and normalized
spectra using Python-based graphical interface ProQEXAFS soft-
ware.38 The edge position (E0) of each sample spectrum was set to
the most intense peak of the first derivative (see Figure S7). Further
processing of X-ray absorption near-edge spectroscopy (XANES) and
extended X-ray absorption fine structure (EXAFS) was carried out
using the Demeter software package (0.9.25, using Ifeffit 1.2.12).39

We used Athena for background subtraction of long-range oscillations
and linear combination fitting (LCF) of supported catalyst spectra
using α-MoO3 and MoO3-NP references. We then used Artemis to
carry out EXAFS fitting using scattering paths generated from
crystallographic α-MoO3 data (COD ID 1537654) which were
summed to simulate the EXAFS spectrum.40 Fitting parameters are
reported in Tables S3−S5, where Debye-Waller factors (Δσ2), path
distances (R), and energy shift (ΔE0) were refined, but coordination
numbers (N) were set according to the crystal structure. The
amplitude reduction factor (S0

2) was determined by first fitting Mo0

foil data measured at the same time as the sample spectra. We carried
out the fits in the ranges indicated in R in Tables S3−S5 and
evaluated the quality of fit using an R-factor.

N2 adsorption−desorption analysis was performed in a Thermo
Scientific Surfer instrument at 77 K. The samples were previously
evacuated in vacuum at 200 °C for 16 h.

CO chemisorption analyses were performed with a Micromeritics
Pulses Chemisorb 2705 apparatus. Before the analysis, the samples
were pretreated under a helium gas flow of 80 mL·min−1 at 350 °C for
3 h and then reduced at 500 °C for 6 h under pure hydrogen. More
details on the analysis procedure can be found in Ronda-Lloret et al.36

Figure 1. Scheme of the formation of oxygen vacancies on MoO3 particles during RWGS, and its ability to dissociate CO2 via the redox pathway
and/or to stabilize carbon-containing species (indicated by R) via the associative pathway.
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Procedure for Catalyst Synthesis. 10 wt % molybdenum (in
metal-basis) materials were prepared using the wet impregnation
method. (NH4)6Mo7O24·4H2O (Sigma Aldrich) was used as a metal
oxide precursor. Ti3AlC2, TiO2 (Hombikat M311), and γ-Al2O3 (CK-
300, Ketjen) were used as supports. In a typical procedure, 0.40 g of
(NH4)6Mo7O24·4H2O and 2 g of support were mixed in 20 mL of
water and stirred at 65 °C for 24 h. The resulting solid was dried at
120 °C for 2 h and then calcined under air at 350 °C for 4 h (heating
rate 4 °C·min−1). The Ti3AlC2 MAX phase was prepared by mixing
the elemental powders purchased from STRTEM chemicals: Ti (325
mesh, 99.5%), Al (325 mesh, 99.5%), and graphite (325 mesh,
99.9%). The composition corresponding to Ti3Al1.1C2 was mixed in a
3D blender (40 rpm) in hexane for 8 h, using 5 mm zirconia balls.
The resulting mixture was placed in an alumina crucible covered with
an alumina lid and heated to 1450 °C for 2 h under an argon
atmosphere (heating and cooling rate was 2 °C·min−1). The resulting
powder was mechanically grinded in an agate mortar. The Mo2TiAlC2
MAX phase was prepared by mixing the elemental powders purchased
from STRTEM chemicals: Ti (325 mesh, 99.5%), Mo (2−4 microns,
99.9%), Al (325 mesh, 99.5%), and graphite (325 mesh, 99.9%). The
composition corresponding to Mo2Ti1.1AlC2 was mixed in a 3D
blender (40 rpm) in hexane for 8 h, using 5 mm zirconia balls. The
resulting mixture was placed in an alumina crucible covered with an
alumina lid and heated to 1550 °C for 2 h under an argon atmosphere
(heating and cooling rate was 2 °C·min−1). The resulting powder was
mechanically ground in an agate mortar. A bulk MoO3 sample was
obtained from the calcination of Mo2C using compressed air (50 mL·
min−1) at 600 °C for 2 h (heating ramp 5 °C·min−1).
Procedure for Catalytic Testing. The catalysts were tested in

the RWGS reaction in a vertical fixed bed reactor. A total of 200 mg of
catalyst was placed on quartz wool in the middle of the reactor, which
had 7 mm inner diameter. The samples were heated under N2 to 400
°C. The catalytic tests were then performed at atmospheric pressure
and at a H2:CO2 ratio of 4:1. We performed temperature screening
tests between 400 and 750 °C using 100 mL·min−1 total flow (30,000
mL·g−1·h−1) and stability tests for 48 h at 550 °C using 50 mL·min−1

total flow (15,000 mL·g−1·h−1). The reactants and products were
analyzed using an online ABB AO2020 advanced optima process gas
analyzer, equipped with thermal conductivity and infrared detectors.
The conversion and selectivity values were calculated using eqs 4

and 5

CO conversion (%)
CO CO

CO
1002

2 in 2 out

2 in
=

[ ] − [ ]
[ ]

·
(4)

CO selectivity (%)
CO

CO CO
100out

2 in 2 out
=

[ ]
[ ] − [ ]

·
(5)

The number of active sites was calculated from CO chemisorption
analysis (see the Experimental Section for details). Using the CO
uptake values obtained from this analysis, we estimated the turnover
frequency (TOF) values (eq 6).

TOF reactant (moles reactant converted site min )
flow reactant (in) conversion reactant

CO uptake weight catalyst

1 1·

= ·
·

− −

(6)

The CO production rate was calculated using eq 7

g

g

CO production rate (mol min )

flow CO (in) yield CO

CO catalyst
1

2

catalyst

· ·

=
·

−

(7)

■ RESULTS AND DISCUSSION
Catalyst Synthesis. We compared the properties and

activity in RWGS of MoO3-based catalysts, using the Ti3AlC2
MAX phase, γ-Al2O3, and TiO2 as supports. The catalysts, each
containing 10 wt % on Mo metal basis, were prepared by wet

impregnation, using ammonium molybdate tetrahydrate as a
precursor. γ-Al2O3 and anatase TiO2 were purchased from
commercial sources. Ti3AlC2 was prepared by mixing
elemental powders of Ti, Al, and graphite, followed by heating
at 1450 °C under argon. Samples of a molybdenum-containing
MAX phase, Mo2TiAlC2, and bulk MoO3 were also tested as
reference materials (see the Experimental Section for details).

Characterization of the Fresh Catalysts. The XRD
pattern of the fresh MoO3/Ti3AlC2 catalyst shows the
characteristic peaks of the Ti3AlC2 MAX phase structure
(Figure 2), indicating that the bulk of the support remains

stable after calcination. Anatase and rutile TiO2 peaks are also
present at 2θ = 25.7 and 27.4°, indicating a slight oxidation of
Ti3AlC2.

41 The characteristic peaks of MoO3 are also visible at
2θ = 12.8 and 23.5°.42 The pattern of MoO3/TiO2 only shows
broad peaks of anatase TiO2 at 2θ = 25.4, 38.2, 48.1, 54.8, 62.7,
70.0, 75.4, and 82.9°.41 Similarly, the pattern of MoO3/Al2O3
only shows the peaks of γ-Al2O3 at 2θ = 37.8, 45.8, 60.7, and
67.0° (Figure S1).43,44 The absence of MoO3 diffraction peaks
indicates that molybdenum particles are small and well-
dispersed over the oxide supports.
We studied the surface composition of the fresh catalysts

with XPS. The Ti 2p and Al 2p spectra of the MoO3/Ti3AlC2
catalyst only show the Ti−O and the Al−O bonds at 458.8 eV
(Ti 2p3/2) and 74.3 eV (Al 2p3/2), respectively (Figure 3). The
distinctive peaks of the Ti3AlC2 structure (Ti−C bond at 454
eV (Ti 2p3/2) and Al−Ti bond at 72 eV (Al 2p3/2)) are
absent.35,45 This indicates that the Ti3AlC2 surface completely
oxidizes to titania and alumina under our calcination
conditions (i.e., under air at 350 °C for 4 h).46 The Ti−O
and Al−O peaks of MoO3/Ti3AlC2 shift to lower binding
energies compared to MoO3/TiO2 and MoO3/Al2O3. This
indicates a charge transfer effect from the bulk MAX phase to
the surface oxide layer, enriching the surface with electrons.47

The Mo 3d spectra of the catalysts (Figure 3) show two
spectral lines, assigned to Mo 3d5/2 and Mo 3d3/2 spin−orbit
components. The Mo 3d5/2 binding energy in MoO3/Ti3AlC2
and MoO3/TiO2 spectra is 232.8 eV, which corresponds to
MoO3 species (Mo6+).48,49 The Mo 3d spectrum of the
MoO3/Al2O3 catalyst shows two contributions at Mo 3d5/2
binding energies of 232.6 and 233.6 eV, corresponding to
Mo5+ and Mo6+ species. In the O 1s spectrum, MoO3/Ti3AlC2
and MoO3/TiO2 also show similar Mo−O binding energies
(ca. 530.4 eV, cf. Figure S2).50 This indicates that the surface of
the Ti3AlC2 undergoes oxidation and Mo predominantly sits
on the oxidized titanium, as expected by the excess of titanium

Figure 2. XRD patterns of the MoO3/Ti3AlC2 catalyst and the
Ti3AlC2 MAX phase used as a support.
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in this compound (Ti/Al ratio is 3 to 1). The excess of
titanium on the MAX phase surface is also confirmed by the
ITi/IAl intensity ratio obtained from XPS (Table S1). Previous
work showed that during oxidation below 700 °C, Ti3AlC2
predominantly converts to titania rather than to alumina.46

While the three catalysts have the same metal loading, the Mo
and support intensity ratio (IMo/ITi or IMo/IAl) is the largest for
the MAX phase-based catalyst (Table S1). This indicates that
this catalyst has the largest Mo-containing particles on the
surface.
HAADF−STEM imaging showed that MoO3 is predom-

inantly dispersed in the form of rods when deposited on
Ti3AlC2 (Figure 4, see also Figures S3 and S4 in the
Supporting Information). Some rods are in contact with the
support, while others are “free” (i.e., unsupported). These rods
are 480 ± 138 nm long and 88 ± 11 nm wide. The large size of
MoO3 particles when supported on Ti3AlC2 results from the
low surface area of this support (ca. 1 m2/g). In agreement
with XRD and XPS results, we see that the MoO3 particles are
very small and highly dispersed when supported on TiO2
(average particle size: 0.42 nm, σ = 0.11 nm) and γ-Al2O3
(average particle size: 0.67 nm, σ = 0.19 nm, Figure S5). The
MoO3/TiO2 and MoO3/Al2O3 catalysts are mesoporous, with

a BET surface area of 208 m2·g−1 and 145 m2·g−1, respectively
(Figure S6 and Table S2).
We then studied the local structure of the molybdenum on

each support using Mo K-edge XANES and EXAFS spectros-
copy. We also measured MoO3 nanoparticles (MoO3-NPs)
and bulk α-MoO3 references for comparison. In the XANES
spectra (Figure 5a), all catalysts show the edge position at
20016.4 eV, characteristic of Mo6+ (1s → 5p, measured at the
maximum of the second peak of the first derivative, see Figure
S7), and a triple peak feature above the edge. The distinct pre-
edge corresponds to the quadrupole 1s−4d transition,
indicating a distorted octahedral environment.51 The triple
peak feature above the edge in the XANES is slightly different
for each catalyst. The MoO3/Ti3AlC2 spectrum is similar to
that of bulk α-MoO3, whereas the features of the MoO3/Al2O3
spectrum are dampened similarly to that of MoO3-NPs.
MoO3/TiO2 shows the largest discrepancy from the reference
spectra, with a more intense central peak compared to the first
and third features. These differences can be partially explained
by differences in nanoparticle size and shape, which affect the
ratio of surface sites to bulk sites, as well as by particle−
support interactions.
We used the MoO3 nanoparticles and the bulk α-MoO3

samples as references for LCF (Figure 5b) to get an indication
of the relative amounts of surface versus internal Mo sites in
the studied catalysts. The absolute numbers obtained from the
LCF cannot be directly related to the number of surface versus
bulk sites, since (i) we only have two reference samples and
(ii) the NP reference consists of a combination of surface and

Figure 3. Ti 2p, Al 2p, and Mo 3d XPS spectra of MoO3/Ti3AlC2,
MoO3/TiO2, and MoO3/Al2O3 catalysts.

Figure 4. HAADF−STEM images of the MoO3/Ti3AlC2 catalyst.
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bulk atoms and the exact proportion of those is unknown. For
this study, we are interested in the trends observed when using
different supports; thus, we use the LCF analyses to infer the
differences in particle sizes between samples. Moreover, the
XAS measures all Mo atoms in the sample. This means that
Mo atoms present in amorphous compounds and/or present as
single site species, which are not detected with other
techniques such as XRD and HAADF−STEM, are also taken
into account in this analysis. We cannot correct for these
contributions as we have no insights into the amount of Mo
forming rods or other species (amorphous and/or single site
species). Figure 5b shows that the MoO3/Al2O3 catalyst can be
fitted to a mixture of bulk α-MoO3 and MoO3-NPs, suggesting
that the average nanoparticle size in this catalyst is slightly
larger than in the MoO3-NP reference. The contribution from
bulk α-MoO3 increases in the MoO3/Ti3AlC2 catalyst, due to
the presence of large rod-shaped MoO3 particles (as seen in
STEM−HAADF). The shape of the XANES spectrum of the
MoO3/TiO2 catalyst is slightly different to either reference
spectra, resulting in a poorer fit (as indicated by the relatively
high R-factor and χ2 value). This suggests that there is a
contribution to the spectrum that is not accounted for by the
nanoparticle or bulk α-MoO3 data.

52 More details on the LCF
results are given in Figure S8 and Table S3.

In the EXAFS spectra (Figure S9), we observe in more detail
the structural differences between MoO3 nanoparticles and
bulk α-MoO3. In k-space, the oscillations of the MoO3-NP
spectrum are dampened compared to α-MoO3, especially at
higher wavenumbers, as expected. This results in an R-space
spectrum in which the amplitude of the second shell is
suppressed. The shape of the first shell in the MoO3-NP
spectrum is also affected, with just one main peak compared to
the complex first shell of α-MoO3. The EXAFS spectrum of
MoO3/Al2O3 is very similar to the MoO3 nanoparticle
reference. The spectrum of MoO3/Ti3AlC2 is more similar to
the bulk α-MoO3 reference, indicating that MoO3 has bulk-like
properties, interacting only weakly with the support. The
MoO3/TiO2 spectrum exhibits dampened oscillations com-
pared to the other spectra. This could result from destructive
interference by an additional, non-MoO3, contribution to the
spectrum or a different coordination geometry in this catalyst.
From the EXAFS fitting (Figure S10), we can see that the
supported catalysts can be fitted in the same way as α-MoO3,
using three doubly degenerate O paths at three different
distances from Mo (Tables S4−S6). This suggests that the
{MoO6} octahedra are distorted in the supported MoO3
catalysts.53 The MoO3/TiO2 spectrum was fitted with an
additional Ti path at 2.76 Å, giving rise to the destructive
interference that dampens the EXAFS oscillations and
indicating that there is a close metal−support interaction.
More details on the EXAFS fitting are reported in the
Supporting Information

Catalytic Tests. We then tested the catalysts in the RWGS
reaction. A total of 200 mg of catalyst was placed in a vertical
fixed bed reactor. As high H2:CO2 ratios improve CO2
conversion,54,55 we set the H2:CO2 ratio to 4:1. We ran
temperature-screening tests between 400−750 °C (100 mL·
min−1 total flow) and long-term stability tests at 550 °C for 48
h (50 mL·min−1 total flow).
Control experiments showed that Ti3AlC2 alone is active

only above 700 °C, converting between 10−18% of CO2
(Figure S11). A Mo2TiAlC2 MAX phase, which contains
molybdenum in the layered MAX phase structure,56 showed
no activity within the entire temperature range. This confirms
that a metal or metal oxide available on the surface as active
sites are required to improve CO2 activation in RWGS. The
prereduction of a MoO3/Al2O3 catalyst at 750 °C did not
improve CO2 conversion and CO selectivity compared to the
unreduced catalyst (Figure S12). Therefore, we focused on the
catalytic tests of the pristine catalysts after calcination, without
prereduction. This is an interesting advantage of our MAX
phase-supported catalyst, as avoiding the preactivation step
results in significant process savings in a real industrial
application.
The temperature-screening tests show that the MoO3/

Ti3AlC2 catalyst is already active at 450 °C, reaching 50%
conversion at 750 °C (Figure S13). Despite the low surface
area and large particle size of this catalyst, its conversion is
similar to MoO3/Al2O3 and MoO3/TiO2. All catalysts were
highly selective to CO above 550 °C. Since the three catalysts
show a similar conversion and selectivity, their CO production
rate values are also similar (Table S7). Due to its low surface
area, the Ti3AlC2-based catalyst has fewer available active sites
compared to the other catalysts, as quantified by CO
chemisorption (Table S8). Thus, we compared the catalyst
in terms of their intrinsic activity, using their TOF (Figure 6a).
MoO3/Ti3AlC2 shows higher TOF values from 450 °C

Figure 5. (a) Mo K-edge XANES spectra of the supported catalysts
and reference structures. (b) Summary of the LCF analysis of the
supported catalysts using reference spectra. The quality of the fit is
indicated by the R-factor and reduced χ2 value.
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onward, indicating that it is intrinsically more active than
MoO3/Al2O3 and MoO3/TiO2.

We also studied the long-term stability of the catalysts at a
WHSV of 15,000 mL·g−1·h−1, which is a relatively high space
velocity that would result in a compact RWGS reactor,
potentially reducing the capital costs of a continuous CO2
conversion unit. In addition, the MoO3/Ti3AlC2 catalyst shows
higher CO2 conversion with considerable CO selectivity at
lower space velocity (Figure S14). To be far from equilibrium
conditions and study the potential of the MAX phase catalyst
in low-temperature RWGS, we performed the stability tests at
550 °C. The MoO3/Ti3AlC2 catalyst is stable over time and it
converts 20% CO2 (Figure S15). MoO3/TiO2 and MoO3/
Al2O3 catalysts give 20−25% and 30% CO2 conversion,
respectively. The increase in conversion at the start of the
reaction might be related to the reduction of the MoO3 species
upon exposure to the hydrogen-rich reaction mixture
(4H2:1CO2). Under these conditions, MoO3/Ti3AlC2 showed
a lower CO production rate (0.01 mol CO produced·gcatalyst

−1·
min−1) than MoO3/TiO2 and MoO3/Al2O3 catalysts (0.02 mol
CO produced·gcatalyst

−1·min−1), see Table S9. When comparing
their intrinsic activity by means of TOF (Figure 6b), MoO3/
Ti3AlC2 stands out as the most active catalyst. It converts 18
mol CO2·site

−1·min−1, while MoO3/Al2O3 and MoO3/TiO2
convert 10 and 7 mol CO2·site

−1·min−1, respectively. Control
experiments showed that a bulk MoO3 sample is significantly
less active than MoO3/Ti3AlC2 (Figure S16). This indicates
that the activity of the Mo sites is enhanced in the MoO3/
Ti3AlC2 catalyst due to metal−support interactions and/or the
exposure of a particular set of planes when MoO3 grows as
rods.57,58

In the stability tests, CO selectivity followed the order
MoO3/TiO2 (70−100%) > MoO3/Al2O3 (60−80%) > MoO3/
Ti3AlC2 (60−65%), indicating the formation of side products
(Figure S15). Methane was not detected. TGA analysis (Figure

S17) of the spent catalysts shows the absence of carbon
deposits, indicating the inhibition of coking reactions. We
hypothesize that alcohols are produced as side products, as
previous work reported the formation of alcohols from CO
hydrogenation and CH4 oxidation reactions when using
MoO3-based catalysts under similar conditions.59−62 In
addition, the CO selectivity profiles oscillate with time (Figure
S15). We hypothesize that this is due to changes in the
molybdenum oxidation state during reaction. Depending on
the balance of reduced/oxidized states, CO hydrogenation to
alcohols can also occur, thus decreasing CO selectivity. The
decrease in CO concentration in the reaction mixture might
shift the equilibrium toward CO2 consumption, giving higher
CO2 conversion with lower CO selectivity. To understand the
working of the catalysts better, we also characterized them after
the reaction. The XRD patterns of the spent catalysts show
that the Ti3AlC2 MAX phase is stable under reaction
conditions (Figure S1). As expected, the Al2O3 and TiO2
supports were also stable (Figure S1).
In the LCF analysis of the MoO3/Ti3AlC2 sample XANES

spectrum (Figure 5), the percentage of bulk α-MoO3 increases
after stability testing. The EXAFS spectrum of the spent
sample is also more similar to bulk α-MoO3 compared to the
fresh sample (Figure S9). This reflects a change in the
molybdenum oxide particle morphology that increases the
volume-to-surface ratio. HAADF−STEM images of the spent
catalyst confirm that the size and morphology of MoO3
particles change during the reaction, from large rods to
agglomerates (Figures S17 and S18). These agglomerates are
smaller than the rods, but their varied shape does not allow us
to calculate the particle size. The nanoparticle sizes on MoO3/
TiO2 (average particle size: 0.51 nm, σ = 0.18 nm) and MoO3/
Al2O3 (average particle size: 0.70 nm, σ = 0.15 nm) catalysts
do not significantly change during the reaction compared to
the fresh samples (Figure S19).
The Mo 3d XPS spectra of the spent catalysts show the

reduction of MoO3 species during the reaction (Figure 7).
Interestingly, MoO3/Ti3AlC2 shows MoO2 (Mo4+), Mo4O11
(Mo5+), and MoO3 (Mo6+) species on the surface, while the
other two catalysts only contain Mo4O11 and MoO3.

48,63 The
percentage of reduced species is significantly higher on the
MoO3/Ti3AlC2 catalyst surface (Table 1), indicating that this
catalyst is reduced more during the reaction. The higher

Figure 6. TOF values of the catalysts during (a) temperature-
screening tests (reaction conditions: 200 mg catalyst, H2:CO2 ratio =
4:1, 100 mL·min−1 total flow, WHSV = 30,000 mL·g−1·h−1) and (b)
stability tests (reaction conditions: 550 °C, 200 mg catalyst, H2:CO2
ratio = 4:1, 50 mL·min−1 total flow, WHSV = 15,000 mL·g−1·h−1).

Figure 7. Mo 3d XPS spectra of the catalysts after the stability test at
550 °C.
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activation percentage observed with MoO3/Ti3AlC2 during the
stability test (around 8%, Figure S15) can be related to its
higher reduction degree under reaction conditions. These
results indicate that a more reduced MoO3 surface leads to the
formation of more oxygen vacancies, which in turn increases
the RWGS activity.
Typically, RWGS results in catalyst reduction, especially in

hydrogen-rich mixtures.64 Hydrogen can remove active oxygen
sites from MoO3, creating water and leaving surface oxygen
vacancies. The CO2 can regenerate the oxygen vacancies by
dissociating on the surface to CO and O.65 The ability of the
catalyst to enhance this redox cycle determines its activity. In
this study, MoO3 nanoparticles in close interaction with the
support lead to poor redox properties, as seen with the MoO3/
TiO2 and MoO3/Al2O3 catalysts. The low surface area of the
Ti3AlC2 MAX phase leads to large bulk-like MoO3 rods.
Nevertheless, MoO3/Ti3AlC2 is the most intrinsically active
catalyst in terms of TOF (Figure 5). We attribute this to the
electronically rich Ti3AlC2, which transfers the charge to the
active site. This charge transfer effect enhances the redox
properties of MoO3, facilitating the formation of surface
oxygen vacancies that participate in the reaction (see Figure
8).66 In addition, electronically richer molybdenum sites are

ideal for CO2 activation, as the charge transfer from Mo to
CO2 antibonding orbitals can weaken the C−O bond,
facilitating its reduction to CO.67

■ CONCLUSIONS
In this work, we show for the first time the potential of MAX
phase-based catalysts for application in CO2 conversion via the
RWGS reaction. When supporting molybdenum oxide on the
Ti3AlC2 MAX phase, the low surface area of the MAX phase
leads to the formation of large MoO3 rods with bulk-like
properties. Nevertheless, the presence of electronically rich
Ti3AlC2 enhances the redox properties of MoO3 under RWGS
conditions, resulting in a highly reduced surface that contains a
large amount of oxygen vacancies. The MoO3/TiO2 and
MoO3/Al2O3 catalysts contain small and highly dispersed

MoO3 nanoparticles, but their close contact with the support
inhibits the formation of oxygen vacancies during the reaction.
As MoO3/Ti3AlC2 forms more oxygen vacancies under
reaction, this catalyst showed the highest intrinsic activity in
terms of TOF during the catalytic experiments. The electroni-
cally richer Mo sites when supported on MAX phases are ideal
activation sites for CO2 via electron transfer to CO2
antibonding orbitals. Such an interaction weakens the C−O
bond and favors its reduction to CO. All catalysts are selective
to CO, inhibiting the formation of undesired methane and
coke. However, unidentified side products, most likely
alcohols, also form. This study, which brings more insights
into the workings of MAX phase catalysts on CO2 conversion
reactions, shows the high potential of MAX phases as catalyst
supports.
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(67) Álvarez, A.; Borges, M.; Corral-Pérez, J. J.; Olcina, J. G.; Hu, L.;
Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. CO2 Activation over
Catalytic Surfaces. ChemPhysChem 2017, 18, 3135−3141.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.0c07881
ACS Sustainable Chem. Eng. 2021, 9, 4957−4966

4966

https://doi.org/10.1016/j.jcat.2007.05.016
https://doi.org/10.1016/j.jcat.2007.05.016
https://doi.org/10.1016/j.jcat.2013.02.021
https://doi.org/10.1016/j.jcat.2013.02.021
https://doi.org/10.1016/j.jcat.2013.02.021
https://doi.org/10.1021/acscatal.7b01913
https://doi.org/10.1021/acscatal.7b01913
https://doi.org/10.1002/cphc.201700782
https://doi.org/10.1002/cphc.201700782
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.0c07881?rel=cite-as&ref=PDF&jav=VoR

