291 research outputs found
Ceramic Paste for Patching High-Temperature Insulation
A ceramic paste that can be applied relatively easily, either by itself or in combination with one or more layer(s) of high-temperature ceramic fabrics, such as silicon carbide or zirconia, has been invented as a means of patching cracks or holes in the reinforced carbon-carbon forward surfaces of a space shuttle in orbit before returning to Earth. The paste or the paste/fabric combination could also be used to repair rocket-motor combustion chambers, and could be used on Earth to patch similar high-temperature structures. The specified chemical composition of the paste admits of a number of variations, and the exact proportions of its constituents are proprietary. In general, the paste consists of (1) silicon carbide, possibly with addition of (2) hafnium carbide, zirconium carbide, zirconium boride, silicon tetraboride, silicon hexaboride, or other metal carbides or oxides blended with (3) a silazane-based polymer. Because the paste is viscous and sticky at normal terrestrial and outer-space ambient temperatures, high-temperature ceramic fabrics such as silicon carbide or zirconia fabric impregnated with the paste (or the paste alone) sticks to the damaged surface to which it is applied. Once the patch has been applied, it is smoothed to minimize edge steps as required [forward-facing edge steps must be < or equal to 0.030 in. (< or equal to 0.76 mm) in the original intended space-shuttle application]. The patch is then heated to a curing temperature thereby converting it from a flexible material to a hard, tough material. The curing temperature is 375 to 450 F (approx.190 to 230 C). In torch tests and arc-jet tests, the cured paste was found to be capable of withstanding a temperature of 3,500 F (approx. 1,900 C) for 15 minutes. As such, the material appears to satisfy the requirement, in the original space-shuttle application, to withstand re-entry temperatures of approx.3,000 F (approx. 1,600 C)
Recommended from our members
Radiative forcing of climate: the historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications
We describe the historical evolution of the conceptualization, formulation, quantification, application and utilization of âradiative forcing (RF, see e.g., IPCC, 1990)â of Earthâs climate.
Basic theories of shortwave and long wave radiation were developed through the 19th and 20th centuries, and established the analytical framework for defining and quantifying the perturbations to the Earthâs radiative energy balance by natural and anthropogenic influences. The insight that the Earthâs climate could be radiatively forced by changes in carbon dioxide, first introduced in the 19th century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data and analysis of well-mixed greenhouse gases and the global climate system through the 20th Century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990.
The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification including the first assessment of the effect of the forcing due to doubling of carbon dioxide on climate (the âCharneyâ report, National Research Council, 1979). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs: carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO (1986) and IPCC (1990) international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system has proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change, and the diversity of the forcing mechanisms, have grown. This has led to the current situation where âEffective Radiative Forcing (ERF, e.g., IPCC, 2013)â is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature e.g., precipitation. The forcing-response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes.
The significant advances over the past half-century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m-2, with a range from 1.1 to 3.3 W m-2; 90% confidence interval). Further, except in the immediate aftermath of climatically-significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth System science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system
The Role of Clouds: An Introduction and Rapporteur Report
This paper presents an overview of discussions during the Cloud s Role session at the Observing and Modelling Earth s Energy Flows Workshop. N. Loeb and B. Soden convened this session including 10 presentations by B. Stevens, B. Wielicki, G. Stephens, A. Clement, K. Sassen, D. Hartmann, T. Andrews, A. Del Genio, H. Barker, and M. Sugi addressing critical aspects of the role of clouds in modulating Earth energy flows. Presentation topics covered a diverse range of areas from cloud microphysics and dynamics, cloud radiative transfer, and the role of clouds in large-scale atmospheric circulations patterns in both observations and atmospheric models. The presentations and discussions, summarized below, are organized around several key questions raised during the session. (1) What is the best way to evaluate clouds in climate models? (2) How well do models need to represent clouds to be acceptable for making climate predictions? (3) What are the largest uncertainties in clouds? (4) How can these uncertainties be reduced? (5) What new observations are needed to address these problems? Answers to these critical questions are the topics of ongoing research and will guide the future direction of this area of research
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the âtippingâ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
- âŠ