214 research outputs found

    Band structure and optical properties of opal photonic crystals

    Full text link
    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.Comment: to appear in PR

    All-polymer methylammonium lead iodide perovskite microcavities

    Get PDF
    open8Thanks to a high photoluminescence quantum yield, large charge carrier diffusion, and ease of processing from solution, perovskite materials are becoming increasingly interesting for flexible optoelectronic devices. However, their deposition requires wide range solvents that are incompatible with many other flexible and solution-processable materials, including polymers. Here, we show that methylammonium lead iodide (MAPbI3) films can be directly synthesized on all-polymer microcavities via simple addition of a perfluorinated layer which protects the polymer photonic structure from the perovskite processing solvents. The new processing provides microcavities with a quality factor Q = 155, that is in agreement with calculations and the largest value reported so far for fully solution processed perovskite microcavities. Furthermore, the obtained microcavity shows strong spectral and angular redistribution of the the MAPbI3 photoluminescence spectrum, which shows a 3.5 fold enhanced intensity with respect to the detuned reference. The opportunity to control and modify the emission of a MAPbI3 film via a simple spun-cast polymer structure is of great interest in advanced optoelectronic applications requiring high colour purity or emission directionality.openLova, Paola; Giusto, Paolo; Di Stasio, Francesco; Manfredi, Giovanni; Paternò, Giuseppe M; Cortecchia, Daniele; Soci, Cesare; Comoretto, DavideLova, Paola; Giusto, Paolo; DI STASIO, Francesco; Manfredi, Giovanni; Paternò, Giuseppe M; Cortecchia, Daniele; Soci, Cesare; Comoretto, David

    Single nanowire-based UV photodetectors for fast switching

    Get PDF
    Relatively long (30 µm) high quality ZnO nanowires (NWs) were grown by the vapor-liquid-solid (VLS) technique. Schottky diodes of single NW were fabricated by putting single ZnO NW across Au and Pt electrodes. A device with ohmic contacts at both the sides was also fabricated for comparison. The current-voltage (I-V) measurements for the Schottky diode show clear rectifying behavior and no reverse breakdown was seen down to -5 V. High current was observed in the forward bias and the device was found to be stable up to 12 V applied bias. The Schottky barrier device shows more sensitivity, lower dark current, and much faster switching under pulsed UV illumination. Desorption and re-adsorption of much smaller number of oxygen ions at the Schottky junction effectively alters the barrier height resulting in a faster response even for very long NWs. The NW was treated with oxygen plasma to improve the switching. The photodetector shows high stability, reversibility, and sensitivity to UV light. The results imply that single ZnO NW Schottky diode is a promising candidate for fabricating UV photodetectors

    Optical range plasmonics of niobium around the superconducting transition temperature

    No full text
    We show that a niobium metamaterial exhibits optical plasmonic resonances which change in a critical way near the superconducting transition temperature of 9K. This suggest a hitherto unknown link between superconductivity and optical range plasmonics

    A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: the ENCORE II study†

    Get PDF
    Aims Endothelial dysfunction and plaque formation are features of atherosclerosis. Inhibition of L-type calcium channels or HMG-CoA pathway improves endothelial function and reduces plaque size. Thus, we investigated in stable coronary artery disease (CAD) the effects of a calcium antagonist on coronary endothelial function and plaque size. Methods and results In 454 patients undergoing PCI, acetylcholine (10−6 to 10−4 M) was infused in a coronary segment without significant CAD. Changes in coronary diameter were measured and an intravascular ultrasound examination (IVUS) was performed. On top of statin therapy, patients were randomized in a double-blind fashion to placebo or nifedipine GITS 30-60 mg/day and followed for 18-24 months. Blood pressure was lower on nifedipine than on placebo by 5.8/2.1 mmHg (P < 0.001) as was total and LDL cholesterol (4.8 mg/dL; P = 0.495), while HDL was higher (3.6 mg/dL; P = 0.026). In the most constricting segment, nifedipine reduced vasoconstriction to acetylcholine (14.0% vs. placebo 7.7%; P < 0.0088). The percentage change in plaque volume with nifedipine and placebo, respectively, was 1.0 and 1.9%, ns. Conclusion The ENCORE II trial demonstrates in a multi-centre setting that calcium channel blockade with nifedipine for up to 2 years improves coronary endothelial function on top of statin treatment, but did not show an effect of nifedipine on plaque volum

    A Quaternary ZnCdSeTe Nanotip Photodetector

    Get PDF
    The authors report the growth of needle-like high density quaternary Zn0.87Cd0.13Se0.98Te0.02nanotips on oxidized Si(100) substrate. It was found that average length and average diameter of the nanotips were 1.3 μm and 91 nm, respectively. It was also found that the as-grown ZnCdSeTe nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. Furthermore, it was found that the operation speeds of the fabricated ZnCdSeTe nanotip photodetector were fast with turn-on and turn-off time constants both less than 2 s

    A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection

    Get PDF
    Ultraviolet photodetectors have applications in fields such as medicine, communications and defence1, and are typically made from single-crystalline silicon, silicon carbide or gallium nitride p–n junction photodiodes. However, such inorganic photodetectors are unsuitable for certain applications because of their high cost and low responsivity (<0.2 A W−1)2. Solution-processed photodetectors based on organic materials and/or nanomaterials could be significantly cheaper to manufacture, but their performance so far has been limited2,3,4,5,6,7. Here, we show that a solution-processed ultraviolet photodetector with a nanocomposite active layer composed of ZnO nanoparticles blended with semiconducting polymers can significantly outperform inorganic photodetectors. As a result of interfacial trap-controlled charge injection, the photodetector transitions from a photodiode with a rectifying Schottky contact in the dark, to a photoconductor with an ohmic contact under illumination, and therefore combines the low dark current of a photodiode and the high responsivity of a photoconductor (∼721–1,001 A W−1). Under a bias of <10 V, our device provides a detectivity of 3.4 × 1015 Jones at 360 nm at room temperature, which is two to three orders of magnitude higher than that of existing inorganic semiconductor ultraviolet photodetectors
    corecore