534 research outputs found
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
We present the results of the first test plates of the extended Baryon
Oscillation Spectroscopic Survey. This paper focuses on the emission line
galaxies (ELG) population targetted from the Dark Energy Survey (DES)
photometry. We analyse the success rate, efficiency, redshift distribution, and
clustering properties of the targets. From the 9000 spectroscopic redshifts
targetted, 4600 have been selected from the DES photometry. The total success
rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a
bright and faint, on average more distant, samples including redshifts measured
from a single strong emission line. We find a mean redshift of 0.8 and 0.87,
with 15 and 13\% of unknown redshifts respectively for the bright and faint
samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic
redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9
respectively. Star contamination is lower than 2\%. We measure a galaxy bias
averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and
of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been
obtained propagating the errors in the correlation function to the fitted
parameters. This redshift evolution for the galaxy bias is in agreement with
theoretical expectations for a galaxy population with MB-5\log h < -21.0. We
note that biasing is derived from the galaxy clustering relative to a model for
the mass fluctuations. We investigate the quality of the DES photometric
redshifts and find that the outlier fraction can be reduced using a comparison
between template fitting and neural network, or using a random forest
algorithm
Forward Global Photometric Calibration of the Dark Energy Survey
Many scientific goals for the Dark Energy Survey (DES) require calibration of
optical/NIR broadband photometry that is stable in time and uniform
over the celestial sky to one percent or better. It is also necessary to limit
to similar accuracy systematic uncertainty in the calibrated broadband
magnitudes due to uncertainty in the spectrum of the source. Here we present a
"Forward Global Calibration Method (FGCM)" for photometric calibration of the
DES, and we present results of its application to the first three years of the
survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at
the observatory with data from the broad-band survey imaging itself and models
of the instrument and atmosphere to estimate the spatial- and time-dependence
of the passbands of individual DES survey exposures. "Standard" passbands are
chosen that are typical of the passbands encountered during the survey. The
passband of any individual observation is combined with an estimate of the
source spectral shape to yield a magnitude in the standard
system. This "chromatic correction" to the standard system is necessary to
achieve sub-percent calibrations. The FGCM achieves reproducible and stable
photometric calibration of standard magnitudes of stellar
sources over the multi-year Y3A1 data sample with residual random calibration
errors of per exposure. The accuracy of the
calibration is uniform across the DES footprint to
within . The systematic uncertainties of magnitudes in
the standard system due to the spectra of sources are less than
for main sequence stars with .Comment: 25 pages, submitted to A
Brown dwarf census with the Dark Energy Survey year 3 data and the thin disc scale height of early L types
27 pages, 18 figuresIn this paper we present a catalogue of 11 745 brown dwarfs with spectral types ranging from L0 to T9, photometrically classified using data from the Dark Energy Survey (DES) year 3 release matched to the Vista Hemisphere Survey (VHS) DR3 and Wide-field Infrared Survey Explorer (WISE) data, covering ≈2400 deg2 up to iAB = 22. The classification method follows the same phototype method previously applied to SDSS-UKIDSS-WISE data. The most significant difference comes from the use of DES data instead of SDSS, which allow us to classify almost an order of magnitude more brown dwarfs than any previous search and reaching distances beyond 400 pc for the earliest types. Next, we also present and validate the GalmodBD simulation, which produces brown dwarf number counts as a function of structural parameters with realistic photometric properties of a given survey. We use this simulation to estimate the completeness and purity of our photometric LT catalogue down to iAB = 22, as well as to compare to the observed number of LT types. We put constraints on the thin disc scale height for the early L (L0–L3) population to be around 450 pc, in agreement with previous findings. For completeness, we also publish in a separate table a catalogue of 20 863 M dwarfs that passed our colour cut with spectral types greater than M6. Both the LT and the late M catalogues are found at DES release page https://des.ncsa.illinois.edu/releases/other/y3-mlt.Peer reviewedFinal Published versio
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
Recommended from our members
H0LiCOW X: Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI2033-4723
Galaxies and galaxy groups located along the line of sight towards
gravitationally lensed quasars produce high-order perturbations of the
gravitational potential at the lens position. When these perturbation are too
large, they can induce a systematic error on of a few-percent if the lens
system is used for cosmological inference and the perturbers are not explicitly
accounted for in the lens model. In this work, we present a detailed
characterization of the environment of the lens system WFI2033-4723 (, = 0.6575), one of the core targets of the H0LICOW
project for which we present cosmological inferences in a companion paper (Rusu
et al. 2019). We use the Gemini and ESO-Very Large telescopes to measure the
spectroscopic redshifts of the brightest galaxies towards the lens, and use the
ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the
lens ( km/s) and of several nearby
galaxies. In addition, we measure photometric redshifts and stellar masses of
all galaxies down to mag, mainly based on Dark Energy Survey imaging
(DR1). Our new catalog, complemented with literature data, more than doubles
the number of known galaxy spectroscopic redshifts in the direct vicinity of
the lens, expanding to 116 (64) the number of spectroscopic redshifts for
galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the
flexion-shift as a measure of the amplitude of the gravitational perturbation,
we identify 2 galaxy groups and 3 galaxies that require specific attention in
the lens models. The ESO MUSE data enable us to measure the
velocity-dispersions of three of these galaxies. These results are essential
for the cosmological inference analysis presented in Rusu et al. (2019).Comment: Matches the version accepted for publication by MNRAS. Note that this
paper previously appeared as H0LICOW X
- …