358 research outputs found

    Mitochondrial proteomics of the acetic acid – induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii – derived hybrid strain

    Get PDF
    Very high concentrations of acetic acid at low pH induce programmed cell death (PCD) in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic acid have been previously examined, the corresponding molecular players remain largely unknown in Z. bailii. Also, the reason why acetic acid concentrations known to be necrotic for S. cerevisiae induce PCD with an apoptotic phenotype in Z. bailii remains to be elucidated. In this study, a 2-DE-based expression mitochondrial proteomic analysis was explored to obtain new insights into the mechanisms involved in PCD in the Z. bailii derived hybrid strain ISA1307. This allowed the quantitative assessment of expression of protein species derived from each of the parental strains, with special emphasis on the processes taking place in the mitochondria known to play a key role in acetic acid – induced PCD. A marked decrease in the content of proteins involved in mitochondrial metabolism, in particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a concomitant increase in the abundance of proteins involved in fermentation (Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified proteins also suggest the involvement of the oxidative stress response, protein translation, amino acid and nucleotide metabolism, among other processes, in the PCD response. Overall, the results strengthen the emerging concept of the importance of metabolic regulation of yeast PCD.Funding received by iBB-Institute for Bioengineering and Biosciences from FCT-Portuguese Foundation for Science and Technology (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) is acknowledge

    La influencia de los productos químicos en la precipitación de asfaltenos: una comparación entre las técnicas de microscopía de fuerza atómica y de infrarrojo cercano

    Get PDF
    Asphaltenes can cause serious problems to petroleum industry. Indication of asphaltenes stability can be obtained by precipitation induced by n-heptane, monitored by near-infrared (NIR). However, this technique does not provide information on the particles sizes. In this study, the precipitation onset of model systems (1wt% asphaltenes in toluene) was monitored by NIR, with and without adding additive. The particles sizes of the same systems were monitored by atomic force microscopy (AFM): Dispersions of asphaltenes in toluene, n-heptane and mixtures of these two solvents were analyzed by AFM. For the pure model system, the size of the asphaltenes aggregates clearly increased in function of rising n-heptane concentration in the solvent mixture, with this increase being much more pronounced for solubility parameter values below that corresponding to the precipitation onset. In the presence of additives, significantly smaller particles were obtained even when the precipitation onset showed only a slight shift

    The influence of chemicals on asphaltenes precipitation: a comparison between atomic force microscopy and near infrared techniques

    Get PDF
    Los asfaltenos pueden causar serios problemas en la industria de petróleo. La evaluación de la estabilidad de los asfaltenos puede ser obtenida a través de la precipitación inducida por n-heptano, monitoreada por infrarrojo cercano (NIR). Sin embargo, esta técnica no provee información al respecto del tamaño de partículas. En este estudio, el onset de precipitación de sistemas modelo (asfaltenos en tolueno 1%p) fue monitoreado por NIR, con y sin la adición de aditivo. Los tamaños de partículas de los mismos sistemas fueron monitoreados por microscopía de fuerza atómica (AFM): dispersiones de asfaltenos en tolueno, n-heptano y mezclas de estos dos solventes fueron analizadas por AFM. Para el sistema modelo puro, el tamaño de los agregados de asfaltenos aumentó claramente en función del aumento de la concentración de n-heptano en la mezcla de solventes, siendo este aumento más marcado para valores de parámetros de solubilidad menor que el correspondiente al onset de precipitación. En la presencia de aditivos, partículas significativamente menores fueron obtenidas aun cuando el onset de precipitación mostró sólo un ligero cambio.Asphaltenes can cause serious problems to petroleum industry. Indication of asphaltenes stability can be obtained by precipitation induced by n-heptane, monitored by near-infrared (NIR). However, this technique does not provide information on the particles sizes. In this study, the precipitation onset of model systems (1wt% asphaltenes in toluene) was monitored by NIR, with and without adding additive. The particles sizes of the same systems were monitored by atomic force microscopy (AFM): Dispersions of asphaltenes in toluene, n-heptane and mixtures of these two solvents were analyzed by AFM. For the pure model system, the size of the asphaltenes aggregates clearly increased in function of rising n-heptane concentration in the solvent mixture, with this increase being much more pronounced for solubility parameter values below that corresponding to the precipitation onset. In the presence of additives, significantly smaller particles were obtained even when the precipitation onset showed only a slight shift

    Genomic selection for boar taint compounds and carcass traits in a commercial pig population

    Get PDF
    AbstractThis study aimed to compare two different Genome-Wide Selection (GWS) methods (Ridge Regression BLUP − RR-BLUP and Bayesian LASSO − BL) to predict the genomic estimated breeding values (GEBV) of four phenotypes, including two boar taint compounds, i.e., the concentrations of androstenone (andro) and skatole (ska), and two carcass traits, i.e., backfat thickness (fat) and loin depth (loin), which were measured in a commercial male pig line. Six hundred twenty-two boars were genotyped for 2,500 previously selected single nucleotide polymorphisms (SNPs). The accuracies of the GEBV using both methods were estimated based on Jack-knife cross-validation. The BL showed the best performance for the andro, ska and loin traits, which had accuracy values of 0.65, 0.58 and 0.33, respectively; for the fat trait, the RR-BLUP accuracy of 0.61 outperformed the BL accuracy of 0.56. Considering that BL was more accurate for the majority of the traits, this method is the most favoured for GWS under the conditions of this study. The most relevant SNPs for each trait were located in the chromosome regions that were previously indicated as QTL regions in other studies, i.e., SSC6 for andro and ska, SSC2 for fat, and SSC11, SSC15 and SSC17 for loin

    Nanomaterials for Advancing the Health Immunosensor

    Get PDF
    Nanotechnology has exerted a significant impact in the development of biosensors allowing more sensible analytical methods. In health applications, the main challenge of the immunoassay is to reach the suitable limit of detection, recognizing different analytes in complex samples like whole blood, serum, urine, and other biological fluids. Different nanomaterials, including metallic, silica and magnetic nanoparticles, quantum dots, carbon nanotubes, and graphene, have been applied, mainly to improve charge electron transfer, catalytic activity, amount of immobilized biomolecules, low-background current, signal-to-noise ratio that consequently increase the sensitivity of immunosensors. Given the great impact of nanotechnology, this chapter intends to discuss new aspects of nanomaterials relating to immunosensor advancement

    Seasonality Role on the Phenolics from Cultivated Baccharis dracunculifolia

    Get PDF
    Baccharis dracunculifolia is the source of Brazilian green propolis (BGP). Considering the broad spectrum of biological activities attributed to green proplis, B. dracunculifolia has a great potential for the development of new cosmetic and pharmaceutical products. In this work, the cultivation of 10 different populations of native B. dracunculifolia had been undertaken aiming to determine the role of seasonality on its phenolic compounds. For this purpose, fruits of this plant were collected from populations of 10 different regions, and 100 individuals of each population were cultivated in an experimental area of 1800 m2. With respect to cultivation, the yields of dry plant, essential oil and crude extract were measured monthly resulting in mean values of 399 ± 80 g, 0.6 ± 0.1% and 20 ± 4%, respectively. The HPLC analysis allowed detecting seven phenolic compounds: caffeic acid, ferulic acid, aromadendrin-4′-methyl ether (AME), isosakuranetin, artepillin C, baccharin and 2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid, which were the major ones throughout the 1-year monthly analysis. Caffeic acid was detected in all cultivated populations with mean of 4.0%. AME displayed the wide variation in relation to other compounds showing means values of 0.65 ± 0.13% at last quarter. Isosakuranetin and artepillin C showed increasing concentrations with values between 0% and 1.4% and 0% and 1.09%, respectively. The obtained results allow suggesting that the best time for harvesting this plant, in order to obtain good qualitative and quantitative results for these phenolic compounds, is between December and April

    Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp citri during Citrus sinensis infection

    Get PDF
    Background: Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. Results: For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants'Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. Conclusions: This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.Fundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Minas GeraisBIGA grant-CAPESUniv Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Ciencias Biol DECBI, Ouro Preto, MG, BrazilUniv Fed Ouro Preto, Nucleo Pesquisas Ciencias Biol NUPEB, Ouro Preto, MG, BrazilUniv Fed Rio de Janeiro, Inst Quim, Dept Bioquim DBq, Rio De Janeiro, RJ, BrazilUniv Estadual Paulista, UNESP, Dept Tecnol, Fac Ciencias Agr & Vet Jaboticabal, Jaboticabal, SP, BrazilUniv Estadual Campinas, UNICAMP, Inst Quim, Campinas, SP, BrazilUniv Sao Paulo, Inst Quim, Dept Bioquim, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Ciencias Biol, Diadema, SP, BrazilVirginia Tech, Biocomplex Inst, Blacksburg, VA USAUniv Sao Paulo, Inst Quim, Dept Bioquim, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Ciencias Biol, Diadema, SP, BrazilCAPESFAPESP: 04/02006-7Fundacao de Amparo a Pesquisa do Estado de Minas Gerais: CBB-APQ-04425-10BIGA grant-CAPES: 3385/2013Web of Scienc

    Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids.

    Get PDF
    Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT

    ADME studies and preliminary safety pharmacology of LDT5, a lead compound for the treatment of benign prostatic hyperplasia

    Get PDF
    This study aimed to estimate the absorption, distribution, metabolism and excretion (ADME) properties and safety of LDT5, a lead compound for oral treatment of benign prostatic hyperplasia that has previously been characterized as a multi-target antagonist of α1A-, α1D-adrenoceptors and 5-HT1A receptors. The preclinical characterization of this compound comprised the evaluation of its in vitro properties, including plasma, microsomal and hepatocytes stability, cytochrome P450 metabolism and inhibition, plasma protein binding, and permeability using MDCK-MDR1 cells. De-risking and preliminary safety pharmacology assays were performed through screening of 44 off-target receptors and in vivo tests in mice (rota-rod and single dose toxicity). LDT5 is stable in rat and human plasma, human liver microsomes and hepatocytes, but unstable in rat liver microsomes and hepatocytes (half-life of 11 min). LDT5 is highly permeable across the MDCK-MDR1 monolayer (Papp ∼32×10-6 cm/s), indicating good intestinal absorption and putative brain penetration. LDT5 is not extensively protein-bound and is a substrate of human CYP2D6 and CYP2C19 but not of CYP3A4 (half-life >60 min), and did not significantly influence the activities of any of the human cytochrome P450 isoforms screened. LDT5 was considered safe albeit new studies are necessary to rule out putative central adverse effects through D2, 5-HT1A and 5-HT2B receptors, after chronic use. This work highlights the drug-likeness properties of LDT5 and supports its further preclinical development
    corecore