415 research outputs found

    Structural Evidence for a Copper-Bound Carbonate Intermediate in the Peroxidase and Dismutase Activities of Superoxide Dismutase

    Get PDF
    Copper-zinc superoxide dismutase (SOD) is of fundamental importance to our understanding of oxidative damage. Its primary function is catalysing the dismutation of superoxide to O2 and H2O2. SOD also reacts with H2O2, leading to the formation of a strong copper-bound oxidant species that can either inactivate the enzyme or oxidise other substrates. In the presence of bicarbonate (or CO2) and H2O2, this peroxidase activity is enhanced and produces the carbonate radical. This freely diffusible reactive oxygen species is proposed as the agent for oxidation of large substrates that are too bulky to enter the active site. Here, we provide direct structural evidence, from a 2.15 Å resolution crystal structure, of (bi)carbonate captured at the active site of reduced SOD, consistent with the view that a bound carbonate intermediate could be formed, producing a diffusible carbonate radical upon reoxidation of copper. The bound carbonate blocks direct access of substrates to Cu(I), suggesting that an adjunct to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation by superoxide being driven via a proton-coupled electron transfer mechanism involving the bound carbonate rather than the solvent. Carbonate is captured in a different site when SOD is oxidised, being located in the active site channel adjacent to the catalytically important Arg143. This is the probable route of diffusion from the active site following reoxidation of the copper. In this position, the carbonate is poised for re-entry into the active site and binding to the reduced copper. © 2012 Strange et al

    Effects of experimental bleaching agents on the mineral content of sound and demineralized enamels

    Get PDF
    High concentrations of hydrogen peroxide can cause adverse effects on composition and structure of teeth. However, the addition of calcium and fluoride in bleaching agents may reduce enamel demineralization. Objective: To evaluate chemical changes of sound and demineralized enamels submitted to high concentrations of hydrogen peroxide containing fluoride (F) or calcium (Ca). Material and Methods: Enamel blocks of bovine incisors with standard dimensions were obtained and half of them were submitted to pH-cycling to promote initial enamel caries lesions. Sound and demineralized enamel samples were divided into (n=10): (C) Control (no whitening treatment); (HP) 35% hydrogen peroxide; and two experimental groups: (HPF) 35% HP+0.2% F and (HPC) 35% HP+0.2% Ca. Experimental groups were submitted to two in-office bleaching sessions and agents were applied 3 times for 15 min to each session. The control group was kept in remineralizing solution at 37°C during the bleaching treatment. The surface mineral content of sound and demineralized enamels was determined through Fourier Transform Raman spectroscopy (FT-Raman), Energy dispersive Micro X-ray fluorescence spectroscopy (μ-EDXRF); and the subsurface, through cross-sectional microhardness (CSMH). In addition, polarized light microscopy (PLM) images of enamel subsurface were observed. Results: According to three-way (FT-Raman and μ-EDXRF analyses) or two-way analysis of variance (ANOVA) (CSMH) and Tukey test (α=5%), the calcium or fluoride added to high-concentrated bleaching agents increased phosphate and carbonate concentrations on sound and demineralized enamels (p<0.05). However, HPC and HPF were unable to completely reverse the subsurface mineral loss promoted by bleaching on sound and demineralized enamels. The calcium/ phosphate (Ca/P) ratio of sound enamel decreased after HP treatment (p<0.001). Conclusion: Even though experimental bleaching agents with Ca or F reduced mineral loss for both sound and demineralized enamel surfaces, these agents were unable to reverse the enamel subsurface demineralization

    The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Get PDF
    Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume) of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone=1.5 to 5 m, euphotic zone/mixing zone ratio 1.5). Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C). Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in temperature. Predictive models that consider only temperature as a drive factor can therefore fail in predicting the expansion of this potentially toxic cyanobacterium

    Applications of Site-Specific Labeling to Study HAMLET, a Tumoricidal Complex of α-Lactalbumin and Oleic Acid

    Get PDF
    umor cells), and its tumoricidal activity has been well established.-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules.We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity

    Identification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites

    Get PDF
    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites

    Additive Contributions of Two Manganese-Cored Superoxide Dismutases (MnSODs) to Antioxidation, UV Tolerance and Virulence of Beauveria bassiana

    Get PDF
    The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs), BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs) dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi) mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91–97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains). In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H2O2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT50s) against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that the two MnSODs co-contribute to the biocontrol potential of B. bassiana by mediating cellular antioxidative response

    Determinants of intensive insulin therapeutic regimens in patients with type 1 diabetes: data from a nationwide multicenter survey in Brazil

    Get PDF
    Background: To evaluate the determinants of intensive insulin regimens (ITs) in patients with type 1 diabetes (T1D).Methods: This multicenter study was conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. Data were obtained from 3,591 patients (56.0% female, 57.1% Caucasian). Insulin regimens were classified as follows: group 1, conventional therapy (CT) (intermediate human insulin, one to two injections daily); group 2 (three or more insulin injections of intermediate plus regular human insulin); group 3 (three or more insulin injections of intermediate human insulin plus short-acting insulin analogues); group 4, basal-bolus (one or two insulin injections of long-acting plus short-acting insulin analogues or regular insulin); and group 5, basal-bolus with continuous subcutaneous insulin infusion (CSII). Groups 2 to 5 were considered IT groups.Results: We obtained complete data from 2,961 patients. Combined intermediate plus regular human insulin was the most used therapeutic regimen. CSII was used by 37 (1.2%) patients and IT by 2,669 (90.2%) patients. More patients on IT performed self-monitoring of blood glucose and were treated at the tertiary care level compared to CT patients (p < 0.001). the majority of patients from all groups had HbA1c levels above the target. Overweight or obesity was not associated with insulin regimen. Logistic regression analysis showed that economic status, age, ethnicity, and level of care were associated with IT (p < 0.001).Conclusions: Given the prevalence of intensive treatment for T1D in Brazil, more effective therapeutic strategies are needed for long term-health benefits.Farmanguinhos/Fundacao Oswaldo Cruz/National Health MinistryBrazilian Diabetes SocietyFundacao do Amparo a Pesquisa do Estado do Rio de JaneiroConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estado Rio de Janeiro, Unit Diabet, BR-20551030 Rio de Janeiro, BrazilBaurus Diabet Assoc, São Paulo, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilFed Univ Hosp Porto Alegre, Porto Alegre, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Fed Rio de Janeiro, Rio de Janeiro, BrazilUniv Fed Ceara, Fortaleza, Ceara, BrazilSanta Casa Misericordia, Belo Horizonte, MG, BrazilSanta Casa Misericordia São Paulo, São Paulo, BrazilUniv Fed Amazonas, Manaus, Amazonas, BrazilHosp Geral de Bonsucesso, Rio de Janeiro, BrazilHosp Univ Clementino Fraga Filho IPPMG, Rio de Janeiro, BrazilUniv Hosp São Paulo, São Paulo, BrazilFac Ciencias Med Santa Casa São Paulo, São Paulo, BrazilUniv São Paulo, Inst Crianca, Hosp Clin, São Paulo, BrazilUniv São Paulo, Fac Med Ribeirao Preto, Hosp Clin, Ribeirao Preto, BrazilAmbulatorio Fac Estadual Med Sao Jose Rio Preto, Ribeirao Preto, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilClin Endocrinol Santa Casa Belo Horizonte, Belo Horizonte, MG, BrazilUniv Estadual Londrina, Londrina, BrazilUniv Fed Parana, Hosp Clin, Porto Alegre, RS, BrazilInst Crianca Com Diabet Rio Grande Sul, Rio Grande Do Sul, RS, BrazilGrp Hosp Conceicao, Inst Crianca Com Diabet, Porto Alegre, RS, BrazilHosp Univ Santa Catarina, Florianopolis, SC, BrazilInst Diabet Endocrinol Joinville, Joinville, BrazilHosp Reg Taguatinga, Brasilia, DF, BrazilHosp Geral Goiania, Goiania, Go, BrazilCtr Diabet & Endocrinol Estado Bahia, Goiania, Go, BrazilUniv Fed Maranhao, Sao Luis, BrazilCtr Integrado Diabet & Hipertensao Ceara, Fortaleza, Ceara, BrazilUniv Fed Sergipe, Aracaju, BrazilHosp Univ Alcides Carneiro, Campina Grande, BrazilHosp Univ Joao de Barros Barreto, Belem, Para, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, São Paulo, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilWeb of Scienc

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    • …
    corecore