106 research outputs found

    Molecular characterization and clinical outcomes of pancreatic neuroendocrine tumors (pNENs) harboring PAK4-NAMPT alterations

    Get PDF
    Background: The mTOR inhibitor, Everolimus (EVE), is FDA-approved for the treatment of advanced PNENs on the basis of delay of progression. The RADIANT-3 trial showed an increase in PFS from 4.6 to 11 months compared to placebo with an ORR of only 5%. Prior studies suggest that targeting the aberrant expression of mTOR regulators p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT) in PNENs sensitizes these tumors to EVE. To further qualify these observations, we queried a large real-world dataset of PNENs, characterizing the molecular and immune landscapes, as well as the clinical outcomes associated with aberrant PAK4 and NAMPT expression. Methods: 294 cases of PNENs were analyzed using Next Generation Sequencing (NextSeq) and Whole Exome and Whole Transcriptome Sequencing (NovaSeq) at Caris Life Sciences (Phoenix, AZ). For our analyses, we stratified our study cohort into four groups based on the median expression of PAK4 and NAMPT: PAK4-low/NAMPT-low, PAK4-low/ NAMPT-high, PAK4-high/NAMPT-low and PAK4-high/NAMPT-high. Significance was determined using chi-square, Fisher-Exact or Mann-Whitney U, and p-values were adjusted for multiple comparisons (q , 0.05). Results: High prevalence of mutations in PTEN (10.71% vs 1.18%; p \u3c 0.05, q \u3e 0.05), a tumor suppressor of the mTOR pathway and high expression of genes activated in response to mTOR activation such as SLC2A1 (3.07-fold), PFKP (3.32-fold), SCD (2.70-fold), MVK (2.92-fold) and G6PD (2.58-fold) were observed in PAK4-high/NAMPT-high compared to the PAK4-low/NAMPTlow tumors (all q , 0.05). A congruent enrichment of PI3K/AKT/mTOR and glycolysis pathways by single-sample gene set enrichment analysis was observed in these tumors (all q , 0.05). When querying the immune landscape, we observed enrichment in inflammatory response, IL6/JAK/STAT3, IL2/STAT5 signaling pathways and immune checkpoint genes such as PDCD1 (5.14-fold), CD274 (2.84-fold), PDCD1LG2 (2.44-fold), CD80 (3.00-fold), CD86 (2.82-fold), IDO1 (1.92-fold), LAG3 (3.09-fold), HAVCR2 (2.66-fold) and CTLA4 (4.49-fold) in the PAK4-high/NAMPT-high tumors (all q,0.05). Immune cell infiltration estimates revealed an increase in Neutrophils, NK cells and Tregs in the PAK4-high/NAMPT-high tumors (p \u3c 0.05, q \u3e 0.05). Conclusions: Our study demonstrates that PAK4-high/NAMPT-high PNENs are associated with distinct molecular and immune profiles. While the dual blockade of PAK4 and NAMPT has been reported to enhance the efficacy of EVE in PNENs, whether such a blockade would enhance the efficacy of immunotherapeutics warrants further investigation

    A single center case series of immune checkpoint inhibitor-induced type 1 diabetes mellitus, patterns of disease onset and long-term clinical outcome

    Get PDF
    BackgroundType 1 diabetes mellitus (T1DM) is a rare, but serious immune-related adverse event (irAE) of immune checkpoint inhibitors (ICIs). Our goal was to characterize treatment outcomes associated with ICI-induced T1DM through analysis of clinical, immunological and proteomic data.MethodsThis was a single-center case series of patients with solid tumors who received ICIs and subsequently had a new diagnosis of T1DM. ICD codes and C-peptide levels were used to identify patients for chart review to confirm ICI-induced T1DM. Baseline blood specimens were studied for proteomic and immunophenotypic changes.ResultsBetween 2011 and 2023, 18 of 3744 patients treated at Huntsman Cancer Institute with ICIs were confirmed to have ICI-induced T1DM (0.48%). Eleven of the 18 patients received anti-PD1 monotherapy, 4 received anti-PD1 plus chemotherapy or targeted therapy, and 3 received ipilimumab plus nivolumab. The mean time to onset was 218 days (range 22-418 days). Patients had sudden elevated serum glucose within 2-3 weeks prior to diagnosis. Sixteen (89%) presented with diabetic ketoacidosis. Three of 12 patients had positive T1DM-associated autoantibodies. All patients with T1DM became insulin-dependent through follow-up. At median follow-up of 21.9 months (range 8.4-82.4), no patients in the melanoma group had progressed or died from disease. In the melanoma group, best responses were 2 complete response and 2 partial response while on active treatment; none in the adjuvant group had disease recurrence. Proteomic analysis of baseline blood suggested low inflammatory (IL-6, OSMR) markers and high metabolic (GLO1, DXCR) markers in ICI-induced T1DM cohort.ConclusionsOur case series demonstrates rapid onset and irreversibility of ICI-induced T1DM. Melanoma patients with ICI-induced T1DM display excellent clinical response and survival. Limited proteomic data also suggested a unique proteomic profile. Our study helps clinicians to understand the unique clinical presentation and long-term outcomes of this rare irAE for best clinical management

    Cortisol modulation by ayahuasca in patients with treatment resistant depression and healthy controls

    Get PDF
    Major depression is a highly prevalent mood disorder, affecting about 350 million people, and around 30% of the patients are resistant to currently available antidepressant medications. Recent evidence from a randomized controlled trial (RCT) supports the rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression. The aim of this study was to explore the effect of ayahuasca on plasma cortisol and awakening salivary cortisol response, in the same group of treatment-resistant patients (MD) and in healthy volunteers (C). Subjects received a single dose of ayahuasca or placebo (dosing session), and both plasma and awakening salivary cortisol response were measured at baseline (before dosing session) and 48 h after the dosing session. Baseline assessment (D0) showed blunted awakening salivary cortisol response and hypocortisolemia in patients, with respect to healthy controls. Salivary cortisol was also measured during dosing session, and we observed higher increases for both C and MD that ingested ayahuasca than placebo. After 48 h from the dosing session with ayahuasca, patients' awakening salivary cortisol response is similar to the ones detected in controls. No significant changes in plasma cortisol levels were observed 48 h after the sessions. Therefore, these findings point to new evidence on the modulation of salivary cortisol levels as a result of an ayahuasca session, both in healthy and depressive volunteers. Considering that cortisol acts in regulation of distinct physiological pathways, emotional and cognitive processes, it is assumed to be critically involved to the etiology of depression and its regulation seems to be important for the treatment and remission of major depression, ayahuasca use as antidepressant should be further investigated. Moreover, this study highlights the importance of psychedelics in the treatment of human mental disorders

    A Multi-Arm Phase I Study of the PI3K/mTOR Inhibitors PF-04691502 and Gedatolisib (PF-05212384) plus Irinotecan or the MEK Inhibitor PD-0325901 in Advanced Cancer

    Get PDF
    Ajuts: This study was sponsored by Pfizer Inc.This phase I, four-arm, open-label study (NCT01347866) evaluated the PI3K/mTOR inhibitors PF-04691502 (arms A, B) and gedatolisib (PF-05212384; arms C, D) in combination with the MEK inhibitor PD-0325901 (arm A, D) or irinotecan (arm B, C) in patients with advanced solid tumors. Primary endpoint was dose-limiting toxicity with each combination. Secondary endpoints included safety, pharmacokinetics and preliminary antitumor activity. Dose escalation followed a 3 + 3 design in arm C and a zone-based design in arm D. The PF-04691502 combination arms were closed prematurely due to low tolerability, and the maximum tolerated doses (MTDs) were not determined for either arm. The MTD for the combination of gedatolisib with irinotecan 180 mg/m 2 was estimated to be 110 mg weekly and for the combination with PD-0325901 was not reached at the highest dose evaluated (gedatolisib 154 mg weekly). Plasma concentrations of gedatolisib were generally similar across dose groups in arm C (with irinotecan) and arm D (with PD-0325901). Frequent dose delays or dose reductions were required for both combinations, potentially preventing sustained therapeutic drug concentrations. Gedatolisib plus irinotecan produced a response rate of ~5% and clinical benefit in 16% of patients with advanced colorectal cancer (progression-free survival, 2.8 months). Preliminary evidence of clinical activity was observed with gedatolisib plus PD-0325901 in patients with ovarian cancer (three partial responses, n = 5) or endometrial cancer (one partial response, n = 1) and KRAS mutations. Further evaluations of gedatolisib are warranted in patients with advanced solid malignancies. The online version of this article (10.1007/s11523-017-0530-5) contains supplementary material, which is available to authorized users

    XAF1 as a modifier of p53 function and cancer susceptibility

    Get PDF
    Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido

    Uma capitania dos novos tempos: economia, sociedade e política na São Paulo restaurada (1765-1822)

    Get PDF
    O artigo reflete sobre a trajetória da Capitania de São Paulo, a partir de 1750, apontando sua transformação, de fronteira e "boca do sertão", para território estratégico da conquista e defesa das partes meridionais e área economicamente integrada aos circuitos mercantis atlânticos.In this article, we reflect upon the history of the Captaincy of São Paulo as from 1750, drawing attention to its transformation from frontier land and "door to the backcountry" into a territory of strategic value for the purposes of conquest and defense of the southern regions, and economically integrated into the Atlantic trade routes

    Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial

    Get PDF
    Background Recent open-label trials show that psychedelics, such as ayahuasca, hold promise as fast-onset antidepressants in treatment-resistant depression. Methods To test the antidepressant effects of ayahuasca, we conducted a parallel-arm, double-blind randomized placebo-controlled trial in 29 patients with treatment-resistant depression. Patients received a single dose of either ayahuasca or placebo. We assessed changes in depression severity with the Montgomery-Åsberg Depression Rating Scale (MADRS) and the Hamilton Depression Rating scale at baseline, and at 1 (D1), 2 (D2), and 7 (D7) days after dosing. Results We observed significant antidepressant effects of ayahuasca when compared with placebo at all-time points. MADRS scores were significantly lower in the ayahuasca group compared with placebo at D1 and D2 (p = 0.04), and at D7 (p < 0.0001). Between-group effect sizes increased from D1 to D7 (D1: Cohen's d = 0.84; D2: Cohen's d = 0.84; D7: Cohen's d = 1.49). Response rates were high for both groups at D1 and D2, and significantly higher in the ayahuasca group at D7 (64% v. 27%; p = 0.04). Remission rate showed a trend toward significance at D7 (36% v. 7%, p = 0.054). Conclusions To our knowledge, this is the first controlled trial to test a psychedelic substance in treatment-resistant depression. Overall, this study brings new evidence supporting the safety and therapeutic value of ayahuasca, dosed within an appropriate setting, to help treat depression. This study is registered at http://clinicaltrials.gov (NCT02914769)
    corecore