10 research outputs found

    Post Stall Behavior of a Lifting Line Algorithm

    Get PDF
    A modified lifting line algorithm is considered as a low-cost approach for calculating lift characteristics of wings above stall. The model employs a numerical lifting-line method utilizing the 3D vortex lifting law along with known 2D airfoil data to predict the lift distribution across a wing. This method is expected to be of significant importance in the design of tailsitter vertical take-off and landing (VTOL) aircraft where the aircraft experiences stall conditions during important flight maneuvers. The algorithm is presented, and results compared with published experimental data

    A Numberical Vortex Approach to Aerodynamic Modeling of SUAV/VTOL Aircraft

    Get PDF
    A numerical lifting line method, coupled with a numerical blade element method, is presented as a low computational cost approach to modeling slipstream effects on a finite wing. This method uses a 3D vortex lifting law along with known 2D airfoil data to predict the lift distribution across a wing in the presence of a propeller slipstream. The results are of significant importance in the development of an aerodynamic modeling package for initial stages of vertical takeoff and landing (VTOL) aircraft design. An overview of the algorithm is presented, and results compared with published experimental data

    A Lifting-Line Approach to Estimating Propeller/Wing Interactions

    Get PDF
    A combined wing and propeller model is presented as a low-cost approach to first-cut modeling of slipstream effects on a finite wing. The wing aerodynamic model employs a numerical lifting-line method utilizing the 3D vortex lifting law along with known 2D airfoil data to predict the lift distribution across a wing for a prescribed upstream flowfield. The propeller/slipstream model uses a blade element theory combined with momentum conservation equations. This model is expected to be of significant importance in the design of tail-sitter vertical take-off and landing (VTOL) aircraft, where the propeller slipstream is the primary source of air flow past the wings in some flight conditions. The algorithm is presented, and results compared with published experimental data

    Large-eddy simulation with complex 2-D geometries using a parallel finite-element/spectral algorithm

    No full text
    A parallel stabilized finite-element/spectral formulation is presented for incompressible large-eddy simulation with complex 2-D geometries. A unique discretization scheme is developed consisting of a streamline-upwind Petrov-Galerkin/Pressure-Stabilized Petrov-Galerkin (SUPG/PSPG) finite-element discretization in the 2-D plane with a collocated spectral/pseudospectral discretization in the out-of-plane direction. This formulation provides an efficient approach for solving 3-D flows over arbitrary 2-D geometries. Utilizing this discretization and through explicit temporal treatment of the non-linear terms, the system of equations for each Fourier mode is decoupled within each time step. A novel parallelization approach is then taken, where the computational work is partitioned in Fourier space. A validation of the algorithm is presented via comparison of results for flow past a circular cylinder with published values for Re = 195, 300, and 3900. © 2003 John Wiley and Sons, Ltd.FLWINinfo:eu-repo/semantics/publishe

    Stem cell-based photodynamic therapy

    Get PDF
    We have transfected murine neural stem cells (NSCs) and rat umbilical cord matrix-derived stem cells (RUCMSCs) with a plasmid expressing gaussia luciferase (gLuc). These cells are engineered to secrete the luciferase. We have used gLuc containing supernatant from culturing the NSCs to perform in vitro photodynamic therapy of murine melanoma cells (B16F10), and RUCMSCs to perform in vivo PDT of lung melanomas in C57BL/6 mice. The treatment system was comprised of aminolevulic acid as a prodrug for the synthesis of the photosensitizer protoporphyrin IX, gaussia luciferase, and its’ substrate coelenterazine. A significant reduction of the number of live melanoma cells in vitro and a borderline significant retardation of tumour growth in vivo was observed after coelenterazine-mediated PDT
    corecore