505 research outputs found

    Predicting odor perceptual similarity from odor structure

    Get PDF
    To understand the brain mechanisms of olfaction we must understand the rules that govern the link between odorant structure and odorant perception. Natural odors are in fact mixtures made of many molecules, and there is currently no method to look at the molecular structure of such odorant-mixtures and predict their smell. In three separate experiments, we asked 139 subjects to rate the pairwise perceptual similarity of 64 odorant-mixtures ranging in size from 4 to 43 mono-molecular components. We then tested alternative models to link odorant-mixture structure to odorant-mixture perceptual similarity. Whereas a model that considered each mono-molecular component of a mixture separately provided a poor prediction of mixture similarity, a model that represented the mixture as a single structural vector provided consistent correlations between predicted and actual perceptual similarity (r≥0.49, p<0.001). An optimized version of this model yielded a correlation of r = 0.85 (p<0.001) between predicted and actual mixture similarity. In other words, we developed an algorithm that can look at the molecular structure of two novel odorant-mixtures, and predict their ensuing perceptual similarity. That this goal was attained using a model that considers the mixtures as a single vector is consistent with a synthetic rather than analytical brain processing mechanism in olfaction

    The association between pulse pressure change and cognition in late life: Age and where you start matters

    Get PDF
    AbstractIntroductionVariations across studies in the association between blood pressure (BP) and cognition might be explained partly by duration of exposure to hypertension and partly by nonrandom attrition over time. Pulse pressure (PP) reflects arterial stiffness which may better reflect chronicity of hypertension.MethodsOver six annual cycles, 1954 individuals aged 65+ years from a prospective population-based cohort underwent BP measurements and cognitive evaluations. We examined the relationship of change in five cognitive domains to longitudinal PP patterns across the late-life age spectrum, before and after stratifying by baseline systolic blood pressure (SBP) and adjusting for attrition.ResultsThere were four longitudinal PP patterns: stable normal, stable high, increasing, and decreasing. Those with lower baseline SBP and an increasing or stable high PP had less decline in cognition, an effect that was attenuated with aging. Among those with higher baseline SBP, there were no differences across PP groups, but increasing age was consistently associated with greater cognitive decline.DiscussionThe effect of PP on cognitive decline depends on age, baseline SBP, and the trajectory of PP change. Cardiovascular mechanisms underlying cognitive aging should be recognized as nuanced and dynamic processes when exploring prevention and treatment targets in the elderly, so that the optimal timing and type of intervention can be identified

    Plasma biomarkers identify older adults at risk of Alzheimer's disease and related dementias in a real-world population-based cohort

    Get PDF
    Introduction: Plasma biomarkers—cost effective, non-invasive indicators of Alzheimer's disease (AD) and related disorders (ADRD)—have largely been studied in clinical research settings. Here, we examined plasma biomarker profiles and their associated factors in a population-based cohort to determine whether they could identify an at-risk group, independently of brain and cerebrospinal fluid biomarkers. Methods: We measured plasma phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid beta (Aβ)42/40 ratio in 847 participants from a population-based cohort in southwestern Pennsylvania. Results: K-medoids clustering identified two distinct plasma Aβ42/40 modes, further categorizable into three biomarker profile groups: normal, uncertain, and abnormal. In different groups, plasma p-tau181, NfL, and GFAP were inversely correlated with Aβ42/40, Clinical Dementia Rating, and memory composite score, with the strongest associations in the abnormal group. Discussion: Abnormal plasma Aβ42/40 ratio identified older adult groups with lower memory scores, higher dementia risks, and higher ADRD biomarker levels, with potential implications for population screening. Highlights: Population-based plasma biomarker studies are lacking, particularly in cohorts without cerebrospinal fluid or neuroimaging data. In the Monongahela-Youghiogheny Healthy Aging Team study (n = 847), plasma biomarkers associated with worse memory and Clinical Dementia Rating (CDR), apolipoprotein E ε4, and greater age. Plasma amyloid beta (Aβ)42/40 ratio levels allowed clustering participants into abnormal, uncertain, and normal groups. Plasma Aβ42/40 correlated differently with neurofilament light chain, glial fibrillary acidic protein, phosphorylated tau181, memory composite, and CDR in each group. Plasma biomarkers can enable relatively affordable and non-invasive community screening for evidence of Alzheimer's disease and related disorders pathophysiology

    Hippocampal subfield volumes in COVID-19: a preliminary multicenter study using 7T MRI

    Get PDF
    Background: Hippocampal formation atrophy is a well-established imaging biomarker of several neurological diseases, including Alzheimer\u27s disease, temporal lobe epilepsy, and schizophrenia. The hippocampus is divided into subfields that have different functions and vary in sensitivity to different diseases. This study investigates the potential interaction between COVID-19 and the various hippocampus subfields, which may shed light on the long-term neurological consequences of the virus. Method: We obtained high-resolution T1-weighted (T1w) and T2-weighted (T2w) MRI images using 7T scanners located at three sites in two countries: Pittsburgh (n=14) and Texas (San Antonio and Houston) (n=40) in the USA, and Nottingham, UK (n=33). We evaluated the hippocampus subfields using the ASHS package [1-3]. Imaging sets of 51 subjects with minimal or no manual segmentation corrections (Figures 1 and 2) were included in the analysis. We conducted T-tests with Bonferroni correction, adjusting for age and intracranial volume to identify the differences in hippocampus subfield volumes across groups. Result: Participants who needed admission into the ICU due to Covid-19 showed a significantly lower (p-value=0.0034) left CA1 volume compared to participants who did not require ICU (Figure 3). In addition, several other non-significant trends were observed. Conclusion: Our preliminary findings suggest that Covid-19 may impact the hippocampus, particularly in patients who required intensive care. However, the study - as of to date - has a small sample size and lacks a comparison group with patients who were admitted into ICU for acute illnesses other than Covid-19. Additionally, longitudinal data is needed to track the long-term effects of the disease on the hippocampal subfields

    Genetic Risk Score Predicts Late-Life Cognitive Impairment

    Get PDF
    Introduction. A family history of Alzheimer's disease is a significant risk factor for its onset, but the genetic risk associated with possessing multiple risk alleles is still poorly understood. Methods. In a sample of 95 older adults (Mean age = 75.1, 64.2% female), we constructed a genetic risk score based on the accumulation of risk alleles in BDNF, COMT, and APOE. A neuropsychological evaluation and consensus determined cognitive status (44 nonimpaired, 51 impaired). Logistic regression was performed to determine whether the genetic risk score predicted cognitive impairment above and beyond that associated with each gene. Results. An increased genetic risk score was associated with a nearly 4-fold increased risk of cognitive impairment (OR = 3.824, P = .013) when including the individual gene polymorphisms as covariates in the model. Discussion. A risk score combining multiple genetic influences may be more useful in predicting late-life cognitive impairment than individual polymorphisms

    Covid-19 may have a detrimental impact on sensorimotor function

    Get PDF
    Background: The long-term impact of COVID-19 on global health is still unknown. Sensorimotor biomarkers may be promising indicators of lasting effects of COVID-19. Although normal aging may cause changes in sensorimotor function, more severe changes may indicate the subsequent impacts of COVID-19 on brain health. The objective of this study was to investigate the association between COVID-19 and sensorimotor markers (grip strength, gait, and smell) in the 7T neuroCOVID consortium, which is comprised of 5 sites: The University of Texas Health Science Center at San Antonio, Houston Methodist Research Institute, The University of Pittsburgh, Massachusetts General Hospital, and Nottingham University (UK). Methods: We studied 101 adult participants (mean age 60.9 ± 8.5 years, range 45-80 years, 51% women) without prior cognitive impairment or cerebrovascular disease from the 7T consortium across 3 US and 1 UK sites. The sample included 77 COVID-19 survivors and 24 healthy controls. Sensorimotor markers were measured for olfaction (n=59; 12-item Brief Smell Identification Test (B-SIT)), grip strength (n=97; measured using a hand dynamometer), and Gait (n=101; 4-meter normal walk time and n=99; 4-meter fast-paced walk time). To assess the association between COVID-19 and sensorimotor outcomes, we performed a series of linear regression models adjusting for age, sex, site, and handedness (grip strength only). Statistical significance was set at a 5% level. Results: As compared to healthy controls, COVID-19 survivors, on average had a significantly reduced hand grip in the right hand (β ± standard error: -0.18 ± 0.07, p=0.006). We also observed associations with reduced gait speed. COVID-19 survivors, on average, had a slower walk time in both normal (0.17 ± 0.06, p=0.004) and fast-paced (0.04 ± 0.02, p=0.022) as compared to healthy controls. We did not observe any statistical associations between COVID-19 survivors and left-hand grip strength or B-SIT. Conclusions: These results highlight that Covid-19 infection may have a detrimental impact on sensorimotor function. Additional analysis with a larger sample size are ongoing, which will allow us to further assess the effect of infection severity. Future studies will look to evaluate the association between sensorimotor markers, cognition, and ultra-high field 7T MRI-based imaging markers

    Impaired Set-Shifting Ability in Patients with Eating Disorders, Which Is Not Moderated by Their Catechol-O-Methyltransferase Val158Met Genotype

    Get PDF
    The aim of this study was to examine the set-shifting ability in women with both anorexia nervosa (AN) and bulimia nervosa (BN) and to investigate whether it is contributed by the catechol-O-methyltransferase (COMT) Val158Met genotype. A total of 102 Korean participants-40 women with lifetime AN, 28 women with lifetime BN, and 34 healthy women of comparable age and intelligence quotient- were examined. A neuropsychological battery of tests was applied and blood samples were obtained for COMT Val158Met genotyping. Set-shifting impairments Trail Making Test (TMT, Part B) were found in patients with AN and BN, respectively. Furthermore, the eating disorders were also linked to deficits in attentional mechanisms (TMT, Part A) and motor skills (Finger Tapping Test). Finally, set-shifting and its link to eating disorders were not moderated by COMT Val158Met genotype

    Subjective Word-Finding Difficulty Reduces Engagement in Social Leisure Activities in Alzheimer's Disease

    Get PDF
    OBJECTIVES: To assess the influence of subjective word-finding difficulty on degree of engagement in social leisure activities among individuals with Alzheimer's disease (AD). DESIGN: Analysis of data collected from the second cohort of the Multicenter Study of Predictors of Disease Course in Alzheimer's disease. SETTING: Four study sites in the United States and France. PARTICIPANTS: Individuals diagnosed with mild to moderate AD (N = 236). MEASUREMENTS: On separate questionnaires, participants were asked to 1) report whether they had trouble finding the right word when speaking (subjective word-finding difficulty) and 2) rate their frequency and enjoyment of social and nonsocial leisure activities. Objective language measures included object naming and verbal fluency. Measures of dependence, depression, cognitive status, age, sex, and education were also included as covariates in regression analyses. RESULTS: Fifty-two percent of the sample reported word-finding difficulty, and subjective complaints were correlated with poorer verbal fluency scores. Subjective word-finding difficulty was selectively related to social but not nonsocial activity measures. Endorsers of word-finding difficulty reported less frequency and enjoyment of social leisure activities, controlling for effects of covariates and objective word-finding ability. In contrast, lower engagement in nonsocial activities was associated with older age and higher depression scores but not with word-finding complaints. Caregivers' reports of study participants' activities corroborated these results. CONCLUSION: Individuals with AD who are aware of increasing word-finding failures are less likely to participate in and enjoy socially oriented leisure activities. This finding may have significant implications for clinical and health outcomes in AD. Failure to evaluate subjective language complaints could result in social withdrawal symptoms, threatening the individual's quality of life and increasing caregiver burden. Reduced social interaction may ultimately exacerbate language symptoms over time
    corecore