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Cognitive & Behavioral Assessment

The association between pulse pressure change and cognition in late life:
Age and where you start matters
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Abstract Introduction: Variations across studies in the association between blood pressure (BP) and cogni-
tion might be explained partly by duration of exposure to hypertension and partly by nonrandom attri-
tion over time. Pulse pressure (PP) reflects arterial stiffness which may better reflect chronicity of
hypertension.
Methods: Over six annual cycles, 1954 individuals aged 651 years from a prospective population-
based cohort underwent BP measurements and cognitive evaluations. We examined the relationship
of change in five cognitive domains to longitudinal PP patterns across the late-life age spectrum,
before and after stratifying by baseline systolic blood pressure (SBP) and adjusting for attrition.
Results: There were four longitudinal PP patterns: stable normal, stable high, increasing, and
decreasing. Those with lower baseline SBP and an increasing or stable high PP had less decline in
cognition, an effect that was attenuated with aging. Among those with higher baseline SBP, there
were no differences across PP groups, but increasing age was consistently associated with greater
cognitive decline.
Discussion: The effect of PP on cognitive decline depends on age, baseline SBP, and the trajectory of
PP change. Cardiovascular mechanisms underlying cognitive aging should be recognized as nuanced
and dynamic processes when exploring prevention and treatment targets in the elderly, so that the
optimal timing and type of intervention can be identified.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Pulse pressure; Cognitive decline; Heterogeneity

1. Introduction

Despite strong evidence for a positive association be-
tween midlife hypertension and late-life cognitive impair-
ment [1–5], the relationship between late-life hypertension

and cognitive function remains unclear [1,4,6–8].
Observed inconsistencies between studies partly reflect
variations in study design and populations. Another likely
factor is unmeasured heterogeneity, within populations, as
regard the timing and duration of exposure to
hypertension, which in turn could influence its effects and
potential modifiability [9]. Such investigations would
benefit from a proxy measure representing the duration of
exposure to hypertension.
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A potential proxy or surrogate measure is pulse pressure
(PP), partly reflecting arterial stiffness, measured as the dif-
ference between systolic blood pressure (SBP) and diastolic
blood pressure (DBP). PP is potentially a better measure of
the chronic effects of hypertension than blood pressure itself
[1,10–13]. PP increases with age and is associated with a
number of cardiovascular risk factors and outcomes
[14,15]. Arterial stiffness appears related to Alzheimer
disease (AD) pathology, providing a potential vascular
marker that is more closely related to AD [13,16–18] than
other cardiovascular measures. However, evidence remains
conflicted as to the association of cognitive performance
with arterial stiffness, whether measured as PP or through
ultrasound determined pulse wave velocity [19–24].

Here, we explored the relationships between longitudinal
change in PP and cognitive performance in multiple cogni-
tive domains over 5 years and how these relationships
were influenced by initial (baseline) blood pressure (BP).
We identified subgroups of individuals with distinct PP tra-
jectories over time and compared their relationships with
change in cognition over the same period. As an increase
in PP typically reflects significant vascular remodeling and
stiffening, we hypothesized that those with increasing PP
over time would have a greater decline in cognition. Further,
because the impact of arterial health on brain health likely
varies across the age spectrum of late life, we assessed
whether the relationship between change in PP and cognition
differed in the young-old and old-old. Finally, we accounted
for the potential effects of participant loss over time, which
is inevitable and likely nonrandom in longitudinal studies.

2. Methods

2.1. Subjects

The Monongahela–Youghiogheny Healthy Aging Team
is an epidemiologic study of cognitive decline and dementia
in an age-stratified, random sample drawn from the voter
registration list of small town communities in Southwestern
Pennsylvania [25]. Details of sampling, recruitment, and
cohort characteristics have been previously reported [25].
Inclusion criteria were age 65 or older, not residing in a
long-term care facility at study entry, no substantial sensory
impairment, and no decisional incapacity. Initial screening
was performed on 2036 participants, of whom 54 were
excluded from the full evaluation based on substantial base-
line cognitive impairment (,21 on age and education-
adjusted mini-mental state examination [MMSE]) [26,27].
The full evaluation was conducted on the remaining 1982
participants who had a mean (SD) age of 77.6 (7.4) years;
were 61.1% women and 94.8% of mixed European
descent; and had a median educational level of high school
graduate. For the present analyses, we further excluded
another 32 individuals whose full evaluation revealed
severe cognitive impairment at study entry, leaving 1954
total participants for the analyses reported here. All

procedures were approved by the University of Pittsburgh
Institutional Review Board and all participants provided
written informed consent.

2.2. Clinical evaluation

At study entry and each follow-up visit, trained research
staff performed comprehensive in-home evaluations
including medical history (self-report of diagnosis by health
care professional), current and past alcohol and tobacco use,
current medications, a brief physical examination, neuro-
logic evaluation, and cognitive testing (see below). At each
study visit, blood pressure was measured approximately
90 minutes after the start of the visit by a trained interviewer
according to protocol. After the appropriate cuff size was
determined, the participant’s blood pressure was measured
using an aneroid sphygmomanometer and stethoscope.
Before the BP reading was taken, the participant was in a
seated position for at least 5 minutes with feet flat on the
floor. A second reading was taken after having the partici-
pant stand for at least 3 minutes. If SBP was .175 mm
Hg or DBP was .100 mm Hg in either position, a repeat
measurement was performed later in the physical examina-
tion. The BP variable used here represents an average of
the total measurements taken at each visit.

PP was calculated as SBP-DBP. Participants were classi-
fied as hypertensive if they had SBP.140 or DBP.90 or if
taking antihypertensive medications. The vascular-related
factors included a self-report of physician-diagnosed
myocardial infarction, hypertension, congestive heart fail-
ure, cardiac related procedures, transient ischemic attack,
stroke, diabetes, and elevated cholesterol.

2.3. Cognitive evaluation

The cognitive evaluation consisted of multiple tests in the
domains of attention/processing speed, executive function,
language, learning and memory, and a single test for visuo-
spatial function. For each domain, a composite Z-score was
estimated as the mean of individual Z-scores by test, stan-
dardized to raw score means and SDs of the cohort at base-
line [25]. Slope of cognitive change in each domain for each
individual over time was estimated from a linear mixed
model with random intercept and random slope of time.

2.4. Diagnostic category

Using the Clinical Dementia Rating scale (CDR) [28],
participants were rated as having no dementia (CDR 5 0),
possible/very mild dementia (equivalent to mild cognitive
impairment; CDR 5 0.5), and dementia (CDR �1). We
restricted the analytic sample at baseline to individuals
with CDR ,1.

2.5. Statistical methods

See detailed statistical methods in the Supplementary
Material.
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2.5.1. Trajectories of pulse pressure measurements
We used latent-class random-intercept linear models to

identify longitudinal trajectories of pulse pressure (PP)
over six annual assessment cycles (including the number
of distinct trajectory groups and the trajectory pattern for
each group), Fig. 1 (Supplementary Material). Bayesian in-
formation criteria were used to determine the number of
distinct trajectory groups. Analyses were performed using
the package lcmm through R v3.1.0.

We compared the PP trajectory groups with regard to
baseline demographics, life style/health practices, waist:hip
ratio, APOE ε4 allele carrier status, and vascular disorders
and risk factors using Kruskal–Wallis, chi-square, or Fisher
exact tests as appropriate, Table 1. Finally, we assessed the
univariable relationships between longitudinally measured
SBP and DBP, and change in PP, and patterns of antihyper-
tensive use over the 6 cycles.

2.5.2. Pulse pressure groups and cognitive decline
The median baseline PP in our study cohort was 62 mm

Hg, and the median SBP was 132 mm Hg. To explore the
association between baseline PP (,62 vs. �62 mm Hg)
and subsequent slope of change in each cognitive domain,
we fit a multivariable linear regression model adjusting for
age, education, gender, and baseline cognitive domain
score.

Next, to examine the relationship of PP trajectory groups
and cognitive decline in each cognitive domain, we fit gener-
alized linear models with normal distribution and identity
link, adjusted for age, gender, and education. We lacked suf-
ficient power to include additional covariates because some
of the trajectory groups included relatively few participants.
Regression parameters were estimated by solving the gener-
alized estimating equations (GEEs). The estimates in the
GEE analyses represent the differences in slope between a
given PP group and the reference PP group (detailed under
Results). Interaction effects of PP groups and age were
examined to identify the effects on cognitive decline across
the age span. To explore the potential contributions of het-
erogeneity in the cohort, we repeated the GEE analyses after
stratifying the PP groups by baseline SBP according to the
group median (�132 mmHg vs., 132 mmHg). All models
included only age as no consistent associations were found
with education or gender and cognition.

2.5.3. Attrition
Natural attrition is inevitable in longitudinal observa-

tional studies, particularly studies of older adults, and the
same cardiovascular risk factors are often associated with
PP, cognition, and attrition [29]. To account for possible
bias resulting from selective attrition due to death or severe
illnesses, we conducted propensity score analyses via

Fig. 1. Class-specific mean latent process predicted trajectory for the four pulse pressure patterns.
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logistic regression models evaluated at each cycle to
generate time-dependent inverse probability weights. The
time-dependent weights were incorporated into the main
generalized linear models with GEE to adjust for attrition
when evaluating the effects of PP trajectory groups on cogni-
tive changes over time (see Supplementary Material). To
better visualize the relationships between PP groups and
slope of cognitive decline at different ages, after accounting
for attrition, we plotted the predicted slopes for each of the
PP groups for 65–74, 75–84 and �85 years old, Fig. 2. An-
alyses were performed using SAS, v9.3 (Cary, NC, USA:
SAS Institute, Inc, 2011.).

3. Results

We identified four distinct longitudinal PP trajectories:
two relatively stable groups with normal and elevated PP
and two with more rapidly increasing and decreasing PP
(Table 1 and Fig. 1). We named the first group as normal, sta-
ble PP (nsPP) and used it as the reference group for subse-
quent analyses. We named the remaining groups as low,
increasing rapidly PP (irPP), high, decreasing rapidly PP
(drPP), and high, decreasing slowly PP (dsPP). Of these
four trajectory groups, the drPP group was the oldest and
included the largest proportion of participants with

Table 1

Descriptive of the four pulse pressure trajectory groups analyses

Baseline variable

PP normal stable

(nsPP), n 5 1775

PP decreasing slowly

(dsPP), n 5 96

PP increasing rapidly

(irPP), n 5 37

PP decreasing rapidly

(drPP), n 5 46

P value

Mean (SD);

median OR n (%)

Mean (SD);

median OR n (%)

Mean (SD);

median OR n (%)

Mean (SD);

median OR n (%)

Age 77.4 (7.4); 78yx 79.6 (7.4); 81 76.3 (6.4); 76# 81.5 (6.9); 82 ,.0001

Age group (y) .0012

65–74 631 (35.5)yx 23 (24.0) 15 (40.5) 7 (15.2)

75–84 820 (46.2) 44 (45.8) 18 (48.7) 24 (52.2)

851 324 (18.3) 29 (30.2) 4 (10.8) 15 (32.6)

Systolic BP 131.4 (13.7); 130yx 153.4 (14.0); 156k 130.3 (17.9); 130# 161.2 (17.2); 160 ,.0001*

Diastolic BP 74.5 (9.1); 75x 72.7 (11.5); 72 74.4 (12.5); 78 70.2 (10.8); 70 .0111

Pulse pressure 56.9 (11.8); 57yx 80.8 (10.6); 82k 55.9 (14.3); 52{# 91.0 (15.2); 90 ,.0001*

Hypertensive 1115 (63.0)y 79 (82.3) 27 (73.0) 36 (78.3) .0002*

Diabetes 360 (20.3)y 36 (37.5) 14 (37.8) 11 (23.9) ,.0001*

Waist-hip ratio 0.902 (0.090); 0.904 0.883 (0.071); 0.876 0.872 (0.075); 0.851 0.879 (0.071); 0.884 .0166

Gender .0262

Male 705 (39.7) 27 (28.1) 9 (24.3) 15 (32.6)

Female 1070 (60.3) 69 (71.9) 28 (75.7) 31 (67.4)

Education .3464

,HS 231 (13.0) 14 (14.6) 7 (18.9) 11 (23.9)

5HS 800 (45.1) 45 (46.9) 18 (48.7) 19 (41.3)

.HS 744 (41.9) 37 (38.5) 12 (32.4) 16 (34.8)

Race .9209

Ever smoking 941 (53.2) 46 (47.9) 18 (48.7) 28 (60.9) .4863

Ever drink .1999

Stroke 86 (4.9) 4 (4.2) 1 (2.7) 1 (2.2) .9527

TIA 153 (8.7)z 13 (13.5) 9 (24.3) 6 (13.0) .0057*

Myocardial Infarction 253 (14.3) 19 (19.8) 8 (21.6) 6 (13.0) .2901

Congestive heart failure 169 (9.5) 10 (10.4) 2 (5.6) 4 (8.7) .9149

APOE ε4 allele carrier 329 (20.6) 15 (16.7) 11 (32.3) 10 (24.4) .2578

Cycle 1 blood pressure ,.0001*

Hypotensive 76 (4.3)yx 6 (6.2)k 4 (10.8)# 2 (4.3)

Normotensive 1293 (73.3)yx 16 (16.7)k 22 (59.5)# 4 (8.7)

Hypertensive 396 (22.4)yx 74 (77.1)k 11 (29.7)# 40 (87.0)

CDR .0195

0 1293 (72.8)x 67 (69.8) 26 (70.3) 24 (52.2)

0.5 482 (27.2)x 29 (30.2) 11 (29.7) 22 (47.8)

Abbreviation: TIA, transient ischemic attack.

NOTE. As a result of non-normality types of the continuous variables, the Kruskal–Wallis test was performed if the baseline variable is continuous; whereas

the chi-square test or Fisher exact test when appropriate was performed otherwise.

*Significance with Bonferroni correction adjusted for multiple comparison (P value , .0083).
yC1 vs. C2.
zC1 vs. C3.
xC1 vs. C4.
kC2 vs. C3.
{C2 vs. C4.
#C3 vs. C4.
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CDR 5 0.5. Baseline age, SBP and DBP, waist-hip ratio,
gender, history of transient ischemic attack, hypertension,
diabetes, and baseline CDR were significantly different
among the four groups. Although we identified some associ-
ations between the variables that differed between PP groups
and with the different cognitive domains, these were not
consistent. For that reason, and also the small numbers in
some of the PP groups, we did not include these variables
in the GLM models using GEE. Higher PP was also signif-
icantly associated with greater age, higher SBP, and lower
DBP (data not shown).

Therewas no evidence of increased antihypertensive drug
use during this time to explain the rapid decline in SBP and
PP (Supplementary Fig. 1). PP changes were associated
mostly with SBP changes (as PP increased, SBP increased)
rather than DBP changes.

3.1. Baseline PP and cognitive decline over time

Those with low baseline PP (,62 mm) showed greater
language decline than those with higher PP (�62 mm).
There were no other significant associations between base-
line PP and subsequent slope of cognitive performance, after
adjusting for age and education, Supplementary Table 1.

3.2. PP trajectory and cognitive decline over time

Tables 2 and 3 and Fig. 2 show the relationships between
pulse pressure trajectory groups and change in cognitive
domain scores, over the 6 years, using the generalized linear
models with GEE, and accounting for attrition.

A few general observations are summarized here. After
stratifying by baseline SBP (threshold: median value of
132 mm Hg), the attrition-weighted GEE models showed
distinct patterns of association between PP trajectories and
slope of cognitive decline. Among those with baseline
SBP below 132, in all domains except language, decline
became less steep as PP increased. There was also an age ef-
fect such that in older participants, the difference between
PP groups was attenuated (as indicated by the negative inter-
action term of age! PP group). However, among thosewith

baseline SBP above 132, there were at best marginal associ-
ations between PP and slope of cognitive decline (visuospa-
tial function); but as a group, older age was associated with
more decline than in the lower SBP group. Not unexpect-
edly, regardless of baseline SBP, age significantly increased
the rate of decline across domains. However, only in those
with baseline SBP below the median did we observe an ef-
fect of pulse pressure trajectory on cognitive decline. Impor-
tantly, these patterns did not emerge in the cohort as a whole
before we stratified by baseline BP.

For the following domain-specific results, please refer to
Tables 2 and 3 and Fig. 2. All results below refer specifically
to the attrition-weighted GEE.

3.3. Attention

Before stratifying by SBP, there were no differences be-
tween PP groups. After stratifying the lower SBP group
showed less decline in the irPP and dsPP groups, and the
higher SBP group had greater decline with age.

3.4. Executive function

Before stratifying, the drPP group had a greater slope of
decline, whereas the dsPP group had less decline. After strat-
ifying the lower SBP group showed less executive cognitive
decline in both the irPP and dsPP groups. Similar to atten-
tion, the higher SBP group had a greater decline with
advancing age but no differences between PP groups.

3.5. Memory

Before stratifying, the rapidly increasing (irPP) and dsPP
groups showed less memory decline than the reference
group. Across all age groups, similar findings were identified
for those with lower baseline SBP. Again, those with higher
baseline SBP had greater decline in memory function with
increasing age.

Fig. 2. Estimated cognitive slopes from generalized linear models with GEE adjusting for attrition. The central circle represents the mean slope for the group

with the line representing the minimum and maximum for the particular group. The cognitive scores represent the composite Z-score for each domain. The

values on the y-axis represent the slope of change over the 6 cycles.

E. McDade et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 4 (2016) 56-6660



3.6. Visuospatial

Before stratifying, the two rapidly changing PP groups,
irPP and drPP, had greater decline in visuospatial perfor-
mance compared to the reference PP group. After stratifying,
the results were the same for the group with higher SBP.
However, for the lower SBP group, the dsPP group also
had greater decline in cognition.

3.7. Language

Languagewas the only cognitive domain where no differ-
ences were identified among PP groups.

4. Discussion

In this prospective study of an elderly, population-based
cohort, baseline PP did not predict subsequent cognitive
decline over an average of 5 years. However, when evalu-
ating distinct longitudinal profiles of PP change over the
same time period and accounting for attrition, we identified
differences in cognitive change that (1) varied by trajectory
of PP change, (2) varied by cognitive domain, (3) varied by
age, between the youngest-old and oldest-old, and (4) was
significantly influenced by baseline SBP. Importantly, we
found that, after accounting for attrition and baseline SBP,
an increasing or persistently high PP was associated with
less cognitive decline than in those with low, stable PP but
only if baseline SBP was below the median. However, in
those starting with higher baseline SBP, it was age, rather
than PP group, that influenced cognitive decline the most,
with increasing age being associated with greater decline.
These findings underscore the importance of identifying
the sources of heterogeneity within a population to under-
stand the complex relationships between late life vascular
health and cognitive decline and possibly help explain
some of the discrepancies in the literature [4,5,8,20–
24,30–36]. In particular, they show the importance of
looking at dynamic measures of cardiovascular factors,
rather than assuming that these variables remain static over
time and also of accounting for the individual’s own
baseline. These findings also reinforce the need for more
nuanced approaches to treatment recommendations for
cardiovascular disease in the elderly, particularly as they
might relate to cognitive health.

There is strong evidence for the association of midlife
cardiovascular risk factors and late life dementia. However,
the association between late life hypertension and cognition
remains unclear [1,7,21,32,37,38]. Notable discrepancies
exist among studies of blood pressure and cognition in the
elderly, particularly in cross-sectional studies. These

Table 2

Slope of change over time in cognitive domains among the three PP

trajectory groups compared to PP normal stable group (generalized

estimating equations adjusting for attrition)

Parameter estimate

(95% CI) P value

Attention

Intercept 25.99 (210.61, 21.38) .01

Age 0.18 (0.07, 0.30) .00

Age ! Age 0.00 (0.00, 0.00) .00

dsPP 20.61 (22.27, 1.05) .47

irPP 21.34 (24.58, 1.91) .42

drPP 22.23 (24.69, 0.23) .08

Age ! dsPP 0.01 (20.01, 0.03) .46

Age ! irPP 0.02 (20.02, 0.06) .40

Age ! drPP 0.03 (0.00, 0.06) .07

Memory

Intercept 216.92 (221.26, 212.57) .01

Age 0.27 (0.14, 0.40) .00

Age ! Age 0.00 (0.00, 0.00) .00

dsPP 6.21 (0.00, 12.41) .05

irPP 8.18 (2.35, 14.02) .01

drPP 4.64 (27.76, 17.03) .46

Age ! dsPP 20.04 (20.10, 0.02) .18

Age ! irPP 20.06 (20.11, 20.01) .01

Age ! drPP 20.04 (20.13, 0.05) .39

Language

Intercept 22.07 (25.83, 1.69) .28

Age 20.07 (20.18, 0.05) .26

Age ! Age 0.00 (0.00, 0.00) .12

dsPP 2.82 (22.49, 8.13) .30

irPP 4.12 (22.53, 10.77) .22

drPP 0.34 (26.94, 7.63) .93

Age ! dsPP 20.03 (20.08, 0.01) .17

Age ! irPP 20.04 (20.09, 0.02) .23

Age ! drPP 20.01 (20.07, 0.06) .87

Executive

Intercept 24.25 (28.60, 0.10) .06

Age 0.03 (20.09, 0.15) .63

Age ! Age 0.00 (0.00, 0.00) .69

dsPP 6.13 (1.06, 11.20) .02

irPP 3.74 (22.25, 9.72) .22

drPP 29.98 (215.84, 24.11) .00

Age ! dsPP 20.05 (20.09, 0.00) .04

Age ! irPP 20.05 (20.10, 0.01) .08

Age ! drPP 0.07 (0.01, 0.13) .01

Visuospatial

Intercept 21.96 (29.85, 5.92) .63

Age 0.02 (20.17, 0.21) .86

Age ! Age 0.00 (0.00, 0.00) .68

dsPP 20.50 (25.95, 4.95) .86

irPP 26.99 (214.02, 0.03) .05

drPP 217.14 (233.64, 20.63) .04

Age ! dsPP 0.02 (20.03, 0.08) .35

Age ! irPP 0.00 (20.07, 0.08) .93

Age ! drPP 0.08 (20.07, 0.22) .29

Abbreviations: dsPP, decreased slowly; drPP, decreased rapidly; irPP,

increased rapidly; nsPP, low-normal stable (reference group).

NOTE. The parameter estimates represent the difference in slopes be-

tween specific groups and the reference group (nsPP)—a negative estimate

indicates greater decline for that PP group in that cognitive domain over

time and a positive estimate indicates less decline. The interaction term be-

tween age and PP group indicates whether the difference in slopes between

PP groups changes with age—a negative interaction indicates that the

difference in cognitive slopes between that PP group and the reference

group becomes smaller with increasing age, and a positive interaction indi-

cates such difference becomes larger with increasing age.

=
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Table 3

Slope of change over time in cognitive domains among the three PP trajectory groups compared to low PP group, stratified by baseline systolic blood pressure

(Generalized estimating equations adjusting for attrition)

Parameter estimate (95% CI) P value Parameter estimate (95% CI) P value

Attention (SBP ,132) Attention (SBP �132)

Intercept 22.24 (27.91, 3.41) .43 Intercept 24.27 (29.23, 0.67) .09

Age 0.01 (20.14, 0.16) .87 Age 0.15 (0.02, 0.27) .02

Age ! Age 20.00 (20.00, 0.00) .84 Age ! Age 20.001 (20.002, 20.004) .00

dsPP 26.86 (12.11, 41.61) .00 dsPP 0.23 (21.65, 2.11) .81

irPP 16.53 (6.99, 26.07) .00 irPP 20.76 (27.65, 6.12) .82

drPP 20.28 (20.44, 20.11) .00 drPP 21.44 (23.80, 0.91) .22

Age ! dsPP 20.13 (20.22, 20.05) .00 Age ! dsPP 20.00 (20.02, 0.02) .80

Age ! irPP 0.00 (20.07, 0.09) .86

Age ! drPP 0.01 (20.01, 0.04) .22

Executive (SBP ,132) Executive (SBP �132)

Intercept 26.90 (212.27, 21.53) .01 Intercept 27.05 (212.10, 21.99) .00

Age 0.04 (20.12, 0.21) .59 Age 0.22 (0.09, 0.35) .00

Age ! Age 0.00 (20.00, 0.00) .99 Age ! Age 20.001 (20.002, 20.009) .00

dsPP 7.51 (2.68, 12.35) .00 dsPP 20.10 (22.35, 2.13) .92

irPP 8.88 (1.27, 16.49) .02 irPP 0.96 (24.33, 6.26) .72

Age ! dsPP 20.05 (20.09, 20.01) .01 drPP 1.63 (21.76, 5.04) .34

Age ! irPP 20.09 (20.17, 20.02) .00 Age ! dsPP 0.00 (20.02, 0.03) .91

Age ! irPP 20.01 (20.08, 0.05) .68

Memory (SBP ,132) Memory (SBP �132)

Intercept 215.69 (221.22, 210.17) .00 Intercept 219.74 (225.74, 213.74) .00

Age 0.24 (0.08, 0.40) .00 Age 0.36 (0.19, 0.53) .00

Age ! Age 20.001 (20.002, 20.000) .04 Age ! Age 20.002 (20.003, 20.007) .00

dsPP 16.39 (10.25, 22.53) .00 dsPP 0.38 (28.86, 9.64) .93

irPP 6.37 (20.39, 13.15) .06 irPP 8.91 (0.32, 17.49) .04

Age ! dsPP 20.15 (20.21, 20.08) .00 drPP 3.63 (29.16, 16.43) .57

Age ! irPP 20.05 (20.11, 0.01) .13 Age ! dsPP 0.00 (20.06, 0.07) .95

Age ! irPP 20.06 (20.13, 0.003) .06

Age ! drPP 20.03 (20.13, 0.05) .44

Language (SBP ,132) Language (SBP �132)

Intercept 21.71 (28.15, 4.72) .60 Intercept 25.20 (211.06, 0.65) .08

Age 20.06 (20.23, 0.11) .46 Age 20.00 (20.18, 0.18) .99

Age ! Age 0.00 (20.00, 0.00) .31 Age ! Age 0.00 (20.00, 0.00) .70

dsPP 213.72 (239.57, 12.12) .29 dsPP 20.29 (213.98, 13.39) .96

irPP 9.23 (23.24, 21.71) .15 irPP 1.14 (26.69, 8.98) .77

drPP 0.14 (20.14, 0.43) .32 drPP 1.89 (27.16, 10.95) .68

Age ! dsPP 20.09 (20.19, 0.01) .08 Age ! dsPP 20.00 (20.10, 0.09) .91

Age ! irPP 21.71 (28.15, 4.72) .60 Age ! irPP 0.01 (20.05, 0.07) .73

Age ! drPP 20.01 (20.09, 0.06) .68

Visuospatial (SBP ,132) Visuospatial (SBP �132)

Intercept 10.05 (21.14, 21.25) .0786 Intercept 26.34 (216.39, 3.71) .21

Age 20.23 (20.53, 0.06) .12 Age 0.15 (20.10, 0.41) .23

Age ! Age 0.001 (20.00, 0.003) .17 Age ! Age 20.00 (20.00, 0.00) .17

dsPP 211.62 (220.49, 22.75) .01 dsPP 20.69 (28.20, 6.81) .85

irPP 5.77 (20.91, 12.45) .09 irPP 28.18 (216.02, 20.33) .04

drPP 219.70 (239.12, 20.28) .04

Age ! dsPP 0.13 (0.03, 0.23) .00 Age ! dsPP 0.02 (20.03, 0.09) .42

Age ! irPP 20.10 (20.17, 20.03) .00 Age ! irPP 0.08 (0.00, 0.15) .03

Age ! drPP 0.12 (20.04, 0.28) .15

Abbreviations: dsPP, decreased slowly; drPP, decreased rapidly; irPP, increased rapidly; nsPP, low-normal stable (reference group).

NOTE. The parameter estimates represent the difference in slopes between specific groups and the reference group (nsPP)—a negative estimate indicates

greater decline for that PP group in that cognitive domain over time and a positive estimate indicates less decline. The quadratic term for age indicates a

nonlinear trend with age with a negative term indicating an increase in slope with age and a positive term indicating decrease in the slope with age. The inter-

action term between age and PP group indicates whether the difference in slopes between PP groups changes with age—a negative interaction indicates that the

difference in cognitive slopes between that PP group and the reference group becomes smaller with increasing age, and a positive interaction indicates such

difference becomes larger with increasing age.
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discrepancies may partly reflect the substantial heterogene-
ity in the timing and duration of experiencing hypertension,
within the populations studied. The same baseline BP at
study entry could represent a range of durations of prior
exposure to hypertension or hypotension, thus exerting a var-
iable impact on longitudinal outcomes of cognition. This
variability might explain why hypertension in late life has
been associated with an increased or decreased risk of de-
mentia in different studies [37,39]. Using a measure of BP
that might reflect the chronicity of hypertension (e.g., PP)
is one way of reducing variability in population studies.
Examining longitudinal patterns of PP change allowed us
to better capture different patterns of prior exposure to
hypertension as manifested by arterial stiffness, which
would not be possible in cross-sectional studies with a single
measure. We were able to explore how changes in PP and
cognition relate to each other, in late life and how baseline
blood pressure further contributes to this, that is, where
you start influences where you are going.

We used PP as it may provide a more informative measure
than BP of the degree of cumulative arterial pathology result-
ing from hypertension and age. Furthermore, PP has been
associated with magnetic resonance imaging measures of
vascular disease [12,13,15,40], and arterial stiffness has
recently been shown to be associated with the presence of
cerebral amyloid, increased amyloid deposition over time
[17], and CSF and pathologic markers of AD [13,41].
Importantly, changes in PP can occur with isolated changes
in either SBP or DBP or with changes in both, with each
scenario having different implications. However, in our
population, PP changes were associated mostly with SBP
changes (as PP increased, SBP increased) rather than DBP
changes. This may partially account for the age-related dif-
ferences that were identified in our population, that is,
increasing age was also associated with increasing SBP.

The few studies that have looked at repeated measure-
ments of both BP or arterial stiffness and cognition over
time [21,33–36,42] have had varying results. Unlike the
Baltimore Longitudinal Study of Aging, we found that an
increasing PP was not associated with a greater decline in
memory and executive cognitive tests compared to those
with a stable, low PP. Rather, in our models, an elevated or
increasing PP was associated with less decline in memory,
attention, and executive function. This difference could be
partly due to our stratifying by baseline SBP. In another
study, looking at baseline PP, rather than longitudinal
change in PP, there was worsening cognition in both high
and low PP in relation to the median quartile group [36].
In a recent study after change in BP in hypertensive patients
over 6 years, both increase and decrease in SBP were asso-
ciated with less decline on the MMSE [30]. Another study
examining BP change over 13 years found a decrease in
DBP was associated with worse visuospatial performance
[5]. But, similar to our findings, those with persistently
elevated SBP had no significant worsening over time in
any cognitive function. The four PP trajectory groups that

we identified appear to capture the major categories along
a spectrum of possible patterns (stable high or low and
increasing or decreasing). They also suggest that different
pathways to a specific PP level, rather than the PP itself,
have distinct implications for cognition. We can only specu-
late about the potential mechanisms underlying the noted as-
sociations between PP and cognition. These results might
indicate that with advancing age, which is also associated
with an age-related arterial stiffening, that cognitive func-
tion, particularly, executive function becomes increasingly
reliant on an additional mechanisms such as adequate car-
diac output. However, with advancing age and chronic expo-
sure to higher PP this eventually becomes detrimental, as
was supported by the findings in those starting with higher
SBP. This was supported by a recent study showing that
those with previously elevated SBP were at greatest risk
for having evidence of regional white matter changes that
support executive cognitive function [9].

In the groups with slowly and rapidly increasingly PP,
there was a general pattern of less decline in cognitive func-
tion that was most pronounced in those starting at lower SBP.
Our findings support speculation that an initial elevation in
PP might in fact provide some protection against the effects
of hypoperfusion on cognition, particularly in the oldest-old.
Although elevated PP has been associated with increase
cognitive impairment in some studies [33], this has not
been a uniform finding [34,36]. Consistent with our study,
a recent study assessing the association of arterial
stiffness, BP variability, and vascular risk factors in the
elderly also found that in those with multiple vascular risk
factors an elevated PP was actually protective for cognitive
impairment [43]. These results also support calls to liber-
alize BP goals in the elderly compared to midlife hyperten-
sion [31,37,44,45].

Unlike other studies, we explicitly addressed attrition in
our cohort, recognizing not only the inevitability of dropout
but also the likelihood of the cardiovascular disease and PP
being associated with both cognition and dropout. Attrition
also highlights the importance of taking into account the
impact of those factors associated with dropout in longitudi-
nal, population-based studies. In our case, we found that in
the elderly an increasing or persistently elevated PP was
actually associated with less cognitive decline. Furthermore,
in those starting with higher SBP at study entry, increasing
age was associated with less cognitive decline. This could
indicate with age that BP treatment goals may have to
consider distinct from midlife. Although our data show
that the association between PP and cognition clearly varies
by age (Fig. 2), follow-up of our own cohort over a longer
period of time could reveal the detrimental impact of
elevated or rising PP, but the ideal longitudinal study would
begin at or before midlife.

There are some limitations worth considering. Although
ultrasound methods provide the more direct and precise
measure arterial of stiffness, PP measurement is an easy
and inexpensively measured surrogate with ready
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application to clinical and community settings. In addition, it
is important to recognize that the use of manual sphygmo-
manometer in the elderly may result in “pseudohyperten-
sion” that is a result of peripheral artery changes rather
than central artery vascular stiffness. It is possible that those
with pseudohypertension are overrepresented in the decreas-
ingly rapidly high PP group. If this were the case then
decreasing PP could be a result of a change in cardiac output
during the study which may differ from other causes of a
decrease in PP, but this is speculation. Likewise, a false hy-
pertension has been attributed to the stress of clinic evalua-
tions, that is, white-coat hypertension, but this is unlikely a
major issue with this population as all studies are done in
home by research staff familiar to the participants. We also
recognize that because of the size of our PP groups, we
were limited in adjusting for all measures that differed be-
tween the groups, Table 1.

5. Conclusions

In our elderly cohort, longitudinal changes in PP and
cognition had different relationships that varied by age and
cognitive domain and study entry blood pressure. In general,
an increasing or higher PP seemed be associated with less
cognitive decline in this elderly cohort, particularly in those
starting out with lower systolic blood pressure. This work re-
inforces the need for longitudinal studies in heterogeneous
population-based cohorts, ideally using a life-course
approach. Our findings point to the possibility that different
strategies may be needed for prevention and treatment at
different ages. Future studies that identify ideal PP ranges
across the aging spectrum may be helpful in further identi-
fying preventative and therapeutic targets.
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RESEARCH IN CONTEXT

1. Systemic review: Using Pubmed, Google Scholar,
and review of research article reference sections we
evaluated the current literature for longitudinal asso-
ciations between pulse pressure and cognition in the
elderly with search terms pulse pressure, hyperten-
sion, cognitive decline, dementia. Given the dynamic
relationship of cardiovascular disease and cognition,
we found few studies that examined how change in
measures of vascular disease impacted longitudinal
cognition. Furthermore, we found few studies that
explore the impact of attrition on these relation-
ships—an important consideration in late life epide-
miologic studies.

2. Interpretation: We found distinct groups with
different trajectories of pulse pressure change with
unique relationships to cognitive change. Impor-
tantly, we found that the relationship between pulse
pressure and cognition differed by age, baseline
blood pressure and was significantly impacted by
attrition.

3. Future directions: Identifying optimal ranges of
pulse pressure that preserve cognition in aging will
be critical in identifying prevention and treatment
guidelines across the late life age spectrum.
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