266 research outputs found

    Quiescent X-ray variability in the neutron star Be/X-ray transient GRO J1750-27

    Get PDF
    The Be/X-ray transient GRO J1750-27 exhibited a type-II (giant) outburst in 2015. After the source transited to quiescence, we triggered our multi-year Chandra monitoring programme to study its quiescent behaviour. The programme was designed to follow the cooling of a potentially heated neutron-star crust due to accretion of matter during the preceding outburst, similar to what we potentially have observed before in two other Be/X-ray transients, namely 4U 0115+63 and V 0332+53. However, unlike for these other two systems, we do not find any strong evidence that the neutron-star crust in GRO J1750-27 was indeed heated during the accretion phase. We detected the source at a rather low X-ray luminosity (~10^33 erg/s) during only three of our five observations. When the source was not detected it had very low-luminosity upper limits (<10^32 erg/s; depending on assumed spectral model). We interpret these detections and the variability observed as emission likely due to very low-level accretion onto the neutron star. We also discuss why the neutron-star crust in GRO J1750-27 might not have been heated while the ones in 4U 0115+63 and V 0332+53 possibly were.Comment: 13 pages, 6 figures, 5 tables. Accepted for A&

    Clinical Implications of Azole Resistance in Aspergillus fumigatus, the Netherlands, 2007-2009

    Get PDF
    Contains fulltext : 95722.pdf (publisher's version ) (Open Access)The prevalence and spread of azole resistance in clinical Aspergillus fumigatus isolates in the Netherlands are currently unknown. Therefore, we performed a prospective nationwide multicenter surveillance study to determine the effects of resistance on patient management strategies and public health. From June 2007 through January 2009, all clinical Aspergillus spp. isolates were screened for itraconazole resistance. In total, 2,062 isolates from 1,385 patients were screened; the prevalence of itraconazole resistance in A. fumigatus in our patient cohort was 5.3% (range 0.8%-9.5%). Patients with a hematologic or oncologic disease were more likely to harbor an azole-resistant isolate than were other patient groups (p<0.05). Most patients (64.0%) from whom a resistant isolate was identified were azole naive, and the case-fatality rate of patients with azole-resistant invasive aspergillosis was 88.0%. Our study found that multiazole resistance in A. fumigatus is widespread in the Netherlands and is associated with a high death rate for patients with invasive aspergillosis

    The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers

    Get PDF
    Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes

    Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus

    Get PDF
    Contains fulltext : 103858.pdf (publisher's version ) (Open Access)BACKGROUND: Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14alpha-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR(34)/L98H). We investigated if TR(34)/L98H could have developed through exposure to DMIs. METHODS AND FINDINGS: Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in The Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR(34)/L98H isolate in 1998. Through microsatellite genotyping of TR(34)/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR(34)/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. CONCLUSIONS: Our findings support a fungicide-driven route of TR(34)/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs

    Comparison of Human and Soil Candida tropicalis Isolates with Reduced Susceptibility to Fluconazole

    Get PDF
    Infections caused by treatment-resistant non-albicans Candida species, such as C. tropicalis, has increased, which is an emerging challenge in the management of fungal infections. Genetically related diploid sequence type (DST) strains of C. tropicalis exhibiting reduced susceptibility to fluconazole circulated widely in Taiwan. To identify the potential source of these wildly distributed DST strains, we investigated the possibility of the presence in soil of such C. tropicalis strains by pulsed field gel electrophoresis (PFGE) and DST typing methods. A total of 56 C. tropicalis isolates were recovered from 26 out of 477 soil samples. Among the 18 isolates with reduced susceptibility to fluconazole, 9 belonged to DST149 and 3 belonged to DST140. Both DSTs have been recovered from our previous studies on clinical isolates from the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program. Furthermore, these isolates were more resistant to agricultural azoles. We have found genetically related C. tropicalis exhibiting reduced susceptibility to fluconazole from the human hosts and environmental samples. Therefore, to prevent patients from acquiring C. tropicalis with reduced susceptibility to azoles, prudent use of azoles in both clinical and agricultural settings is advocated

    Antifungal Susceptibility Profiles of 1698 Yeast Reference Strains Revealing Potential Emerging Human Pathogens

    Get PDF
    New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites) were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes). Interestingly, geometric mean minimum inhibitory concentrations (MICs) of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001). Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically “resistant” to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens

    A highly polymorphic effector protein promotes fungal virulence through suppression of plant-associated Actinobacteria

    Get PDF
    Plant pathogens secrete effector proteins to support host colonization through a wide range of molecular mechanisms, while plant immune systems evolved receptors to recognize effectors or their activities to mount immune responses to halt pathogens. Importantly, plants do not act as single organisms, but rather as holobionts that actively shape their microbiota as a determinant of health. The soil-borne fungal pathogen Verticillium dahliae was recently demonstrated to exploit the VdAve1 effector to manipulate the host microbiota to promote vascular wilt disease in the absence of the corresponding immune receptor Ve1. We identify a multiallelic V. dahliae gene displaying c. 65% sequence similarity to VdAve1, named VdAve1-like (VdAve1L), which shows extreme sequence variation, including alleles that encode dysfunctional proteins, indicative of selection pressure to overcome host recognition. We show that the orphan cell surface receptor Ve2, encoded at the Ve locus, does not recognize VdAve1L. Additionally, we demonstrate that the full-length variant VdAve1L2 possesses antimicrobial activity, like VdAve1, yet with a divergent activity spectrum, that is exploited by V. dahliae to mediate tomato colonization through the direct suppression of antagonistic Actinobacteria in the host microbiota. Our findings open up strategies for more targeted biocontrol against microbial plant pathogens

    Drug Resistance in Eukaryotic Microorganisms

    Get PDF
    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies
    corecore