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Abstract New state-of-the-art techniques in sequencing offer
valuable tools in both detection of mycobiota and in under-
standing of the molecular mechanisms of resistance against
antifungal compounds and virulence. Introduction of new se-
quencing platform with enhanced capacity and a reduction in
costs for sequence analysis provides a potential powerful tool
in mycological diagnosis and research. In this review, we
summarize the applications of next-generation sequencing
techniques in mycology.
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Introduction

Besides the human cells, the human body is comprised by
microbial communities, the human microbiome, that plays
important roles in a diversity of physiological processes.
Many of these microbiota cannot be cultured in vitro and until
the use of large-scale culture-independent molecular biologi-
cal methods, the composition of the microbiome remained
obscure. Recently, the Human Microbiome Project (HMP)

and the Metagenomics of the Human Intestinal Tract
(MetaHit) project were started [1, 2]. In these projects, the
microbial composition of different mucosa, like the nasopha-
ryngeal and oral cavities, the respiratory tract, skin, the gas-
trointestinal tract, and the urogenital tract are characterized.
The majority of the studies were mainly focused on the bac-
terial microbiomes, but an increasing number of studies are
published on the exploration of the virome andmycobiome. In
the last few years, several research papers as well as excellent
review papers are published on the composition of the human
microbiomes in health and disease [3–6, 7•, 8••].

In the last few years, ongoing research gained more insight
into the composition of the mycobiome in different sites of the
human body [9–12]. Although the contribution of fungi is
limited to approximately 0.1 % of the total microbiome, it is
thought that fungi play a pivotal role in maintaining microbial
communities and physiological processes in the body [6, 13,
14]. Host-microbiome interactions are responsible for devel-
opment of several disorders. It becomes more clear that mi-
crobiota, including fungi, are in balance with each other and
the host and that disturbance of this fine-tuned host-
microbiome balance can be involved in disease [15].
Determination of the mycobiome in conjunction with the oth-
er microorganisms and host genetic background might gain
insight into the biology in disease and the future development
of personalized medicine.

In the last two decades, multiple new high throughput se-
quencing techniques were developed. Increasing sequencing
capacity combined with a dramatic decrease in costs made
these sequencing techniques available for microbiological
labs for both research and diagnostic purposes [16].
Nowadays, a number of approaches are used in the sequence
analysis of microorganisms. In deep sequencing, the entire
DNA content of a biological sample is sequenced. For reliable
results, a depth or coverage of 10 to 15 is required. This means
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that every single nucleotide in the sample is read at least 10 to
15 times. Due to the microbiological complexity of biological
samples, an amplicon-based approach is used. Parts of the
ribosomal RNA gene are amplified by PCR and subsequently
sequenced. The microbiological composition can be recon-
structed based on the ribosomal DNA (rDNA) sequences.
Finally, in whole genome sequencing (WGS), a complete ge-
nome is sequenced from DNA isolated from a single micro-
organism. WGS can subsequently be applied in phylogenetic
and drug resistance analyses.

The last few years, benchtop sequencing platforms became
available like the Ion Torrent PGM and IlluminaMiSeq. More
recently, the Illumina NextSeq sequencer was introduced,
combining a high capacity and relatively low costs.
Approximately 30 to 40 fungal genomes can be sequenced
in a single run on an Illumina NextSeq500 for approximately
100 euro per genome. Direct deep sequencing of clinical sam-
ples has already been proven as a diagnostic tool in viral
infections [17, 18]. Elaboration of the whole genome sequenc-
ing technique for mycobiome determination in clinical sam-
ples seems to be next logical step.

The Human Mycobiome

The microbiome consists of a complex mixture of microbiota
(e.g. bacteria, fungi, and parasites). Although the microbiome
has become synonymous for the collection of bacterial micro-
biota, the mycobiome consisting of resident mycobiota is an
essential part of the microbiome.

The diversity of fungal species in the human body is still
not fully understood. Over 390 species can be recognized
within the human mycobiome [19]. Nevertheless, differences
are observed between the microbiological composition of the
respiratory- and the gastrointestinal tracts. These differences
are thought to be reflections of the pH tolerance of the various
fungal species and other environmental factors. Distribution
of fungal species in the digestive tract was studied in detail by
Gouba and colleagues [19]. In total, 335 species divided over
158 different genera were found in the digestive tract and the
oral cavity of which 221 species were found only in the intes-
tine and 88 species exclusively in the oral cavity. Remarkably,
of the 247 species found in the digestive tract, only 59 were
identified by in vitro culture and 207 by molecular techniques
[19]. This indicates the substantial limitations in the detection
of mycobiota by culture methods. In a study on the
mycobiome composition of the oral cavity in 20 healthy indi-
viduals, 101 species were found by culture-independent
methods [8••]. The species found belonged to 85 different
genera of which 11 are considered nonculturable. A number
of studies described the composition of the oral cavity
mycobiome in healthy individuals and those with fungal dis-
ease. Ghannoum et al. screened oral rinses from 20 healthy

individuals by sequence analysis of the ITS region of ribosom-
al genes [9]. On average, 15 fungal genera could be identified
in which Candida and Cladosporium were most common. In
addition other fungal genera associated with fungal disease
were found including Aspergillus, Cryptococcus, Fusarium,
and Alternaria. More than 50 % of the genera found by ITS
sequencing are considered nonculturable. In another study,
Dupuy et al. confirmed the results of Ghannoum [11].
However, they found Malassezia and Epicoccum as the most
abundant genera in the oral mycobiome.

Changes in the mycobiome were found in patients with
underlying diseases that compromise the host immunity.
Several studies including HIV patients showed that the HIV
infections correlate with increased abundance of Candida,
Aspergillus, and Fusarium genera in the oral cavity [20•,
21]. Although the knowledge of the fungal composition of
the long microbiome lags behind the extensive insights into
the bacterial contents, it is known from several studies that the
mycobiome of the lower respiratory tract is dramatically al-
tered in cystic fibrosis and immunocompromised patients.
Analysis of BAL samples and oral washes showed increased
representation of medical relevant fungi as Candida,
Aspergillus, and Cryptococcus in pulmonary diseases and im-
munocompromised patients [22, 23••]. During the last few
years, several studies reported further insight into the compo-
sition of the mycobiome in various body sites in health and
disease. A number of very informative review papers summa-
rize the results of these studies [7•, 8••, 24••]. Nguyen et al.
[7•] give an overview of the interactions between especially
the lung mycobiome and different biomes in other body parts
like the gut. The authors concluded that the Bomics^ ap-
proaches are essential to infer the emergent properties of
polymicrobial communities. Understanding of fungal-
bacterial interactions is essential in maintaining a healthy re-
spiratory microbiome. Therefore, development of robust uni-
versal methodological strategies and implementation of these
developments into large multicenter studies are required [7•].
The gut mycobiome and its relationships with intestinal dis-
eases and inflammatory responses were reviewed by
Mukerjee and colleagues. The authors stated that the fungal
community is a critical player in gastrointestinal diseases.
However, the links found between mycobiome composition
in health and diseases reflect association rather than causation.
For better understanding of the role of microbiota in health
and disease, characterization of different classes of microor-
ganisms like bacteria, fungi, and viruses is necessary [8••]. A
comprehensive overview was given by Seed [24••] of
mycobiome diversity between body sites and dynamics during
human development, health, and disease.

Identification of microbiota has gained more speed by the
introduction of metagenomics. Deep sequencing of clinical
samples or microorganisms isolated from different body sites
provides valuable information on the composition of the
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microbiome and the presence of potential pathogens.
Moreover, advanced sequencing techniques enable a system
biological approach of infectious diseases. The relationships
between various microorganisms and between microorgan-
isms and the human host can be studied and will gain more
insight into pathogenesis and infection.

Next-Generation Sequencing in Clinical Mycology

Next-generation sequencing (NGS) techniques have been ap-
plied in public health microbiology for outbreak monitoring
and for metagenomic studies [25, 26]. The increasing perfor-
mance of bench top sequencers such as the Illumina MiSeq
and the Ion Torrent PGM is associated with an ongoing reduc-
tion in costs.

Translation of deep sequencing techniques into routine mi-
crobiological diagnostics on clinical samples seems a logical
next step, thereby not only broadening the range of microor-
ganisms that can be detected but also providing an additional
characterization of the detected microbiota including
mycobiota. Nevertheless, the abundance of fungal species in
microbiota is relatively low. It was estimated that 0.1–1.0 % of
the microbiota consists of fungal species [6, 13, 14]. To be
successful in detecting fungi at the species or even subspecies
level requires a capacity of at least 1012 to 1014 nucleotides per
sequencing run per sample. This means that application of
whole genome sequencing for the determination of
mycobiomes for diagnostics in clinical samples is far beyond
the possibilities delivered by currently available sequencers
like Illumina NextSeq and HiSeq.

For these reasons, experimental data on mycobiomes are
obtained by targeted sequencing of amplicons of the ITS re-
gion of the fungal ribosomal genes. Using sequencing plat-
form like the Illumina NextSeq, complete microbiomic infor-
mation can be extracted from clinical samples with amplicon
sequencing of ITS regions or the entire ribosomal genes.
Application of microbiomics in routine diagnostic mycology
is thereby possible. Full characterization of the microbial com-
munity in different sites of the body can also give indications
of the severity of fungal infection infections. Bittinger et al.
[23••] demonstrated that relative abundances of bacteria and
mycobiota in the lung can be used to distinguish between
fungal colonization and fungal infection [23••].

Next-Generation Sequencing in Mycology Research

Next-generation sequencing techniques are introduced in my-
cology research. Microsatellite analysis is the common ap-
proach to study the genetic diversity between fungal isolates.
However, analysis of single nucleotide polymorphisms
(SNPs) is a more accurate marker for the evaluation of

recombination and genetic relationships [27]. Amplicon se-
quencing of the ribosomal ITS region and whole genome se-
quencing of fungal isolates can be used as the most discrimi-
native approach in genetic research of various fungal patho-
gens like Aspergillus and Candida species and as a tool in
taxonomic identification [27, 28]. Azoles play an important
role in the management of fungal diseases, including
itraconazole (ITC), voriconazole (VOR), posaconazole, and
isavuconazole. The last two decades, an increase is reported
of azole-resistant strains isolated from patients after prolonged
azole treatment [29–36]. A number of common mechanisms
of azole resistance can be recognized in fungi. First, the in-
creased activity of efflux pumps results in a decrease in the
intracellular drug concentration. Second, adaptation of target
site of demethylases active in sterol biosynthetic pathways.
Third, increase of azole target enzyme production. Mutations
involved in these resistance mechanisms are found in a num-
ber of pathogenic fungi like Aspergillus, Candida, and
Cryptococcus [29–36]. Garnaud and colleagues [34] analyzed
40Candida isolates comprising the speciesCandida albicans,
Candida glabrata, and Candida parapsilosis. Additionally,
eight clinical antifungal resistant isolates and 23 sequential
isolates collected from ten different patients were analyzed.
Resistant isolates displayed several mutations in genes com-
monly involved in antifungal resistance including
demethylases and efflux pumps [34]. Using forward and re-
verse genetic approaches, Ianiri and Idnurm [36] identified
genes involved in various stages of the Cryptococcus
neoformans life cycle. Cryptococcus homologs of 35 genes
required for viability in ascomycetes were disrupted and eval-
uated for drug resistance, including genes involved in the er-
gosterol biosynthetic pathway [36].

The opportunistic fungus Aspergillus fumigatus is a patho-
gen causing a range of diseases in humans, including invasive
aspergillosis in immunocompromised patients [37].
Additionally, azole-resistant A. fumigatus isolates have been
obtained from the environment, where exposure to azole fun-
gicides is considered to play a role [38, 39]. Since antifungal
therapy is essential in the treatment of aspergillosis, more in-
sight in mechanisms underlying the resistance phenotype is
required. Systematic screening by whole genome sequencing
of fungal strains isolated from patients with long-term azole
treatment can obtain insight in mechanisms of resistance de-
velopment by extensive use of azole or antifungal compounds
in general.

The Cyp51A protein is a demethylase involved in the bio-
synthesis of ergosterol, a component of the fungal cellular
membrane. Cyp51A is the main target of demethylase inhib-
itors like azoles. Several mutations are found in Cyp51A that
are connected to fungal azole resistance. A variety of amino
acid substitution in Cyp51A, including G54A, P216L,
M220V, and Y121F are known to be responsible for azole-
resistant phenotype. Additionally, duplication of 34 and 46 bp
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nucleotide stretches within the promoter region in the
CYP51A gene were found responsible for an increase in
CYP51A expression.

Cyp51A is a hotspot for mutations that confer azole resis-
tance, but in an increasing number of resistant isolates the
underlying mechanism remains unknown [40, 41]. In a study
by Camps and colleagues, four isogenic A. fumigatus isolates
were collected in which two isolates were azole resistant due
to prolonged azole treatment [40]. Changes in treatment of
chronically infected patients induce resistant A. fumigatus var-
iants gaining more fitness that cannot be explained by the
observed Cyp51A mutations. WGS of strains with an un-
explained azole-resistant phenotype isolated from azole-
treated patients with aspergillosis makes it possible to
follow the development of genetic changes in the
Aspergillus genome. In the study by Camps et al.,
whole genome sequence analysis of isogenic A.
fumigatus isolates that had undergone an azole pheno-
type switch revealed several non-synonymous mutations.
The challenge then is to correlate mutations with phe-
notypes. As several mutations had emerged in the iso-
genic isolates, sexual crossing experiments with selec-
tion of the progeny on azole resistance phenotype were
required to show that azole resistance was associated
with a P88L amino acid substitution in the CCAAT-
binding transcription factor complex subunit HapE.
Moreover, the HapE P88L mutation caused an increased
CYP51A gene expression [40].

Fraczek and colleagues [41] compared twelve azole-
resistant A. fumigatus isolates lacking Cyp51A mutations.
They identified 20 putative azole transporter genes.
Expression studies of the genes of interest, in the absence
and presence of azoles, demonstrated in one isolate an in-
crease in CDR1B efflux transporter gene expression by ITC.
In another isolate, the CYP51A expression was increased 500
times in the presence of ITC. Although the mechanism of the
azole resistance was not identified, the authors concluded that
the cdr1B efflux transporter might be associated with Cyp51A
independent ITC resistance. A whole genome comparison
study of isogenic A. fumigatus isolates from patients with
aspergillosis revealed various amino acid changes [42]. In
one out of five isolates, a P216L amino acid substitution was
found in Cyp51A in conjunction with several other non-
synonymous mutations and deletions of clusters of genes.
The other azole resistant isolated did not harbor cyp51A
mutations.

Apart from whole genome sequencing, next-generation se-
quencing techniques offers more tools for the study of genetic
changes due to environmental influences. Extracellular stimuli
or stress factor as antibiotic compounds may induce modifi-
cations in gene expression profiles. Insight into early effects of
antifungal compounds on fungal metabolism might help us
learn more about molecular mechanisms involved in

resistance development. Gene expression is regulated by epi-
genetic mechanisms like DNA methylation and hydroxyl-
ation. Early mechanisms in the development of resistance
can be studied by epigenetic changes within the fungal ge-
nome. Cytosine methylation or hydroxylation modifies signif-
icantly the temporal expression of genes. Cytosine methyla-
tion for instance, is studied by the chemical conversion using
bisulfate of cytosine into uracil. Cytosine modification rates
can be found by comparison of the genomes with or without
cytosine conversion.

Gene expression can be studied more directly by
transcriptome analysis. Fungi are grown under various
conditions where after the messenger RNAs (mRNAs)
are extracted from the cells and sequenced after conver-
sion into complementary DNA (cDNA). Comparison of
the relative abundance of specific mRNAs isolated from
fungi grown in the presence or absence of antifungal
compounds will give insight into the early effects of
these compounds on gene expression.

Conclusions

Progress in new molecular tools and techniques might
increase speed and sensitivity in the diagnosis of infec-
tious fungal diseases, determination of mycobiomes, and
in fungal research. Next-generation sequencing tech-
niques will enhance the production of molecular data.
Identification of mycobiota by culture-dependent
methods is limited by the fact that the majority of fungal
species cannot be cultured in vitro. Use of next-
generation sequencing techniques is therefore a valuable
extension in the diagnostic repertoire. However, capacity
of sequencers is not unlimited. This means that applica-
tion of whole genome sequencing for the determination
of complex microbiomes for diagnostics in clinical sam-
ples is far beyond the possibilities delivered by currently
available sequencers like Illumina NextSeq and HiSeq.
The increase in capacity of sequencing platform and the
ongoing decrease of sequencing costs, make microbiome
analysis an attractive tool in mycology. Due to the ex-
tensive use of antifungal compounds, development of
resistance in fungi has become a serious problem in hu-
man healthcare and agriculture. Whole genome sequenc-
ing and epigenetic analyses like transcriptomics and
DNA methylation assay are powerful approaches in the
study to molecular mechanism of resistance in fungi.
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