31 research outputs found

    Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme

    Get PDF
    Therapy options at the time of recurrence of glioblastoma multiforme are often limited. We investigated whether treatment with a new intratumoral thermotherapy procedure using magnetic nanoparticles improves survival outcome. In a single-arm study in two centers, 66 patients (59 with recurrent glioblastoma) received neuronavigationally controlled intratumoral instillation of an aqueous dispersion of iron-oxide (magnetite) nanoparticles and subsequent heating of the particles in an alternating magnetic field. Treatment was combined with fractionated stereotactic radiotherapy. A median dose of 30 Gy using a fractionation of 5 × 2 Gy/week was applied. The primary study endpoint was overall survival following diagnosis of first tumor recurrence (OS-2), while the secondary endpoint was overall survival after primary tumor diagnosis (OS-1). Survival times were calculated using the Kaplan–Meier method. Analyses were by intention to treat. The median overall survival from diagnosis of the first tumor recurrence among the 59 patients with recurrent glioblastoma was 13.4 months (95% CI: 10.6–16.2 months). Median OS-1 was 23.2 months while the median time interval between primary diagnosis and first tumor recurrence was 8.0 months. Only tumor volume at study entry was significantly correlated with ensuing survival (P < 0.01). No other variables predicting longer survival could be determined. The side effects of the new therapeutic approach were moderate, and no serious complications were observed. Thermotherapy using magnetic nanoparticles in conjunction with a reduced radiation dose is safe and effective and leads to longer OS-2 compared to conventional therapies in the treatment of recurrent glioblastoma

    Epidermal Cysts of the Eyelid

    No full text

    Patterns of Reduced Cortical Thickness in Late-Life Depression and Relationship to Psychotherapeutic Response

    No full text
    OBJECTIVE: Cortical atrophy has been associated with late life depression (LLD) and recent findings suggest that reduced right hemisphere cortical thickness is associated with familial risk for major depressive disorder but cortical thickness abnormalities in LLD have not been explored. Further, cortical atrophy has been posited as a contributor to poor antidepressant treatment response in LLD but the impact of cortical thickness on psychotherapy response is unknown. This study was conducted to evaluate patterns of cortical thickness in LLD and in relation to psychotherapy treatment outcomes. METHODS: Participants included 22 individuals with LLD and 12 age matched comparison subjects. LLD participants completed 12 weeks of psychotherapy and treatment response was defined as a 50% reduction in depressive symptoms. All participants participated in Magnetic Resonance Imaging (MRI) of the brain and cortical mapping of grey matter tissue thickness was calculated. RESULTS: LLD individuals demonstrated thinner cortex than controls prominently in the right frontal, parietal, and temporal brain regions. Eleven participants (50%) exhibited positive psychotherapy response after 12 weeks of treatment. Psychotherapy non-responders demonstrated thinner cortex in bilateral posterior cingulate and parahippocampal cortices, left paracentral, precuneus, cuneus, and insular cortices, and the right medial orbito-frontal and lateral occipital cortices relative to treatment responders. CONCLUSIONS: Our findings suggest more distributed right hemisphere cortical abnormalities in LLD than have been previously reported. Additionally, our findings suggest that reduced bilateral cortical thickness may be an important phenotypic marker of individuals at higher risk for poor response to psychotherapy
    corecore