3,986 research outputs found

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Top Quark Physics at the Tevatron

    Get PDF
    The discovery of the top quark in 1995, by the CDF and D0 collaborations at the Fermilab Tevatron, marked the dawn of a new era in particle physics. Since then, enormous efforts have been made to study the properties of this remarkable particle, especially its mass and production cross section. In this article, we review the status of top quark physics as studied by the two collaborations using the p-pbar collider data at sqrt(s) = 1.8 TeV. The combined measurement of the top quark mass, m_t = 173.8 +- 5.0 GeV/c^2, makes it known to a fractional precision better than any other quark mass. The production cross sections are measured as sigma (t-tbar) = 7.6 -1.5 +1.8 pb by CDF and sigma (t-tbar) = 5.5 +- 1.8 pb by D0. Further investigations of t-tbar decays and future prospects are briefly discussed.Comment: 119 pages, 59 figures, 17 tables Submitted to Int. J. Mod. Phys. A Fixed some minor error

    Top-quark pole mass

    Full text link
    The top quark decays more quickly than the strong-interaction time scale, \lqcd^{-1}, and might be expected to escape the effects of nonperturbative QCD. Nevertheless, the top-quark pole mass, like the mass of a stable heavy quark, is ambiguous by an amount proportional to \lqcd.Comment: 9 pages, LaTe

    The Genetics of Adaptation for Eight Microvirid Bacteriophages

    Get PDF
    Theories of adaptive molecular evolution have recently experienced significant expansion, and their predictions and assumptions have begun to be subjected to rigorous empirical testing. However, these theories focus largely on predicting the first event in adaptive evolution, the fixation of a single beneficial mutation. To address long-term adaptation it is necessary to include new assumptions, but empirical data are needed for guidance. To empirically characterize the general properties of adaptive walks, eight recently isolated relatives of the single-stranded DNA (ssDNA) bacteriophage φX174 (family Microviridae) were adapted to identical selective conditions. Three of the eight genotypes were adapted in replicate, for a total of 11 adaptive walks. We measured fitness improvement and identified the genetic changes underlying the observed adaptation. Nearly all phages were evolvable; nine of the 11 lineages showed a significant increase in fitness. However, fitness plateaued quickly, and adaptation was achieved through only three substitutions on average. Parallel evolution was rampant, both across replicates of the same genotype as well as across different genotypes, yet adaptation of replicates never proceeded through the exact same set of mutations. Despite this, final fitnesses did not vary significantly among replicates. Final fitnesses did vary significantly across genotypes but not across phylogenetic groupings of genotypes. A positive correlation was found between the number of substitutions in an adaptive walk and the magnitude of fitness improvement, but no correlation was found between starting and ending fitness. These results provide an empirical framework for future adaptation theory

    Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.

    Get PDF
    Abstract OBJECTIVE: We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination. METHODS: We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients. RESULTS: The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077). CONCLUSION: Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation

    Determination of the transport lifetime limiting scattering rate in InSb/Al<inf>x</inf>In<inf>1−x</inf> Sb quantum wells using optical surface microscopy

    Get PDF
    We report magnetotransport measurements of InSb/Al1−xInxSb quantum well structures at low temperature (3 K), with evidence for 3 characteristic regimes of electron carrier density and mobility. We observe characteristic surface structure using differential interference contrast DIC (Nomarski) optical imaging, and through use of image analysis techniques, we are able to extract a representative average grain feature size for this surface structure. From this we deduce a limiting low temperature scattering mechanism not previously incorporated in transport lifetime modelling of this system, with this improved model giving strong agreement with standard low temperature Hall measurements. We have demonstrated that the mobility in such a material is critically limited by quality from the buffer layer growth, as opposed to fundamental material scattering mechanisms. This suggests that the material has immense potential for mobility improvement over that reported to date
    corecore