13 research outputs found

    [Letter] Zero emission targets as long-term global goals for climate protection

    Get PDF
    Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO2). Halting global warming thus requires virtually zero annual CO2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO2 emissions between 2060 and 2070, with net negative CO2 emissions thereafter. Because of residual non-CO2 emissions, net zero is always reached later for total GHG emissions than for CO2. Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO2 emissions

    Connecting the sustainable development goals by their energy inter-linkages

    Get PDF
    The United Nations' Sustainable Development Goals (SDGs) provide guide-posts to society as it attempts to respond to an array of pressing challenges. One of these challenges is energy; thus, the SDGs have become paramount for energy policy-making. Yet, while governments throughout the world have already declared the SDGs to be 'integrated and indivisible', there are still knowledge gaps surrounding how the interactions between the energy SDG targets and those of the non-energy-focused SDGs might play out in different contexts. In this review, we report on a large-scale assessment of the relevant energy literature, which we conducted to better our understanding of key energy-related interactions between SDGs, as well as their context-dependencies (relating to time, geography, governance, technology, and directionality). By (i) evaluating the nature and strength of the interactions identified, (ii) indicating the robustness of the evidence base, the agreement of that evidence, and our confidence in it, and (iii) highlighting critical areas where better understanding is needed or context dependencies should be considered, our review points to potential ways forward for both the policy making and scientific communities. First, we find that positive interactions between the SDGs outweigh the negative ones, both in number and magnitude. Second, of relevance for the scientific community, in order to fill knowledge gaps in critical areas, there is an urgent need for interdisciplinary research geared toward developing new data, scientific tools, and fresh perspectives. Third, of relevance for policy-making, wider efforts to promote policy coherence and integrated assessments are required to address potential policy spillovers across sectors, sustainability domains, and geographic and temporal boundaries. The task of conducting comprehensive science-to-policy assessments covering all SDGs, such as for the UN's Global Sustainable Development Report, remains manageable pending the availability of systematic reviews focusing on a limited number of SDG dimensions in each case
    corecore