5,050 research outputs found

    Cerebral microdialysis: research technique or clinical tool

    Get PDF
    Cerebral microdialysis is a well-established laboratory tool that is increasingly used as a bedside monitor to provide on-line analysis of brain tissue biochemistry during neuro-intensive care. This review describes the principles of cerebral microdialysis and the rationale for its use in the clinical setting, including discussion of the most commonly used microdialysis biomarkers of acute brain injury. Potential clinical applications are reviewed and future research applications identified. Microdialysis has the potential to become an established part of mainstream multimodality monitoring during the management of acute brain injury but at present should be considered a research tool for use in specialist centres

    Halite and stable chlorine isotopes in the Zag H3-6 breccia

    Get PDF
    Zag is an H3-6 chondrite regolith breccia within which we have studied 14 halite grains ?3mm. The purity of the associated NaCl-H2O brine is implied by freezing characteristics of fluid inclusions in the halite and EPMA analyses together with a lack of other evaporite-like phases in the Zag H3-6 component. This is inconsistent with multistage evolution of the fluid involving scavenging of cations in the Zag region of the parent body. We suggest that the halite grains are clastic and did not crystallise in situ. Halite and water-soluble extracts from Zag have light Cl isotopic compositions, ?37-Cl = -1.4 to '2.8 �. Previously reported bulk carbonaceous chondrite values are approximately ?37-Cl = +3 to +4 �. This difference is too great to be the result of fractionation during evaporation and instead we suggest that Cl isotopes in chondrites are fractionated between a light reservoir associated with fluids and a heavier reservoir associated with higher temperature phases such as phosphates and silicates. Extraterrestrial carbon released at 600 degrees Celsius from the H3-4 matrix has ?13-C = -20 �, consistent with poorly graphitised material being introduced into the matrix rather than indigenous carbonate derived from a brine. We have also examined 28 other H-chondrite falls in order to ascertain how widespread halite or evaporite-like mineral assemblages are in ordinary chondrites. We did not find any more to add to Zag (H3-6) and Monahans (H5), which suggests that such highly soluble phases were not usually preserved on the parent bodies

    Low cost vision based personal mobile mapping system

    Get PDF
    Mobile mapping systems (MMS) can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS). A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy

    Development and validation of two short forms of the managing the emotions of others (MEOS) scale

    Get PDF
    The 58-item MEOS assesses managing the emotions of others, a component of trait emotional intelligence (EI). Managing another person's emotions can be used with the intention of helping the target but also in a strategically manipulative manner; the subscales of the MEOS cover both these aspects of emotion management. In order to allow researchers to access shorter versions of the MEOS for use in studies where administering the full-length scale is not feasible, two short forms of the MEOS with six (MEOS-SF) and four (MEOS-VSF) items per sub-scale were developed and validated. Study 1 used factor analysis of pre-existing MEOS item data to select items for the short forms and also compared the bivariate correlations of the MEOS, MEOS-SF and MEOS-VSF with personality and global trait EI. Study 2 examined the MEOS-SF and MEOS-VSF in two new samples (N = 394/226). The results from both studies showed that the short forms had good psychometric properties and associations similar to those of the full-length MEOS with personality, global trait EI, and other measures. The MEOS-SF and MEOS-VSF are hence suitable for use in contexts where a brief assessment of the full range of the domain of managing the emotions of others is required. The availability of short subscales assessing the manipulative facets of the MEOS is especially relevant to the emerging area of “dark side” trait EI research

    Cutting blade dentitions in squaliform sharks form by modification of inherited alternate tooth ordering patterns

    Get PDF
    The squaliform sharks represent one of the most speciose shark clades. Many adult squaliforms have blade-like teeth, either on both jaws or restricted to the lower jaw, forming a continuous, serrated blade along the jaw margin. These teeth are replaced as a single unit and successor teeth lack the alternate arrangement present in other elasmobranchs. Micro-CT scans of embryos of squaliforms and a related outgroup (Pristiophoridae) revealed that the squaliform dentition pattern represents a highly modified version of tooth replacement seen in other clades. Teeth of Squalus embryos are arranged in an alternate pattern, with successive tooth rows containing additional teeth added proximally. Asynchronous timing of tooth production along the jaw and tooth loss prior to birth cause teeth to align in oblique sets containing teeth from subsequent rows; these become parallel to the jaw margin during ontogeny, so that adult Squalus has functional tooth rows comprising obliquely stacked teeth of consecutive developmental rows. In more strongly heterodont squaliforms, initial embryonic lower teeth develop into the oblique functional sets seen in adult Squalus, with no requirement to form, and subsequently lose, teeth arranged in an initial alternate pattern

    Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics

    Get PDF
    AbstractMechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load–displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which ‘indentation moduli’ and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease

    The structure of atomic and molecular clusters, optimised using classical potentials

    Get PDF
    The problem of the determination of the minimum energy configuration of an arrangement of N point particles under the interaction of their interatomic forces is discussed. The interatomic forces are described by classical many body potentials. Different optimisation methods are considered, multi level single link, topographical differential evolution and a genetic algorithm but it is shown that genetic algorithms combined with an efficient local optimisation method is especially quick and reliable for this task. In addition to comparing some different optimisation methods, the structures of clusters of atoms described by interatomic potential functions containing up to a few hundred atoms are calculated including some with some special symmetries. A number of applications are given including covalent carbon and silicon clusters, close-packed structures such as argon and silver and the two-component carbon-hydrogen system

    An intravaginal ring for real-time evaluation of adherence to therapy

    Get PDF
    © 2017 Moss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Two recent Phase III clinical trials to investigate an intravaginal ring for preventing HIV infection demonstrated that adherence to prescribed device use was a primary driver of efficacy. Surrogate methods for determining adherence in the studies were limited in their inability to monitor temporal patterns of use and allow deconvolution of the effects of adherence and device efficacy on HIV infection rates. To address this issue, we have developed functionality in an intravaginal ring to continuously monitor when the device is being used and maintain a log of adherence that can be accessed by clinicians after it is removed. An electronic module fabricated with common, inexpensive electronic components was encapsulated in a silicone intravaginal ring. The device uses temperature as a surrogate measure of periods of device insertion and removal, and stores a record of the data for subsequent retrieval. The adherence-monitoring intravaginal ring accurately recorded the device status over 33 simulated IN-OUT cycles and more than 1000 measurement cycles in vitro. Following initial in vitro testing in a temperature-controlled chamber, the device was evaluated in vivo in sheep using a predetermined insertion/removal pattern to simulate intravaginal ring use. After insertion into the vaginal cavity of a sheep, the logged data correctly indicated the device status over 29 hours of continuous measurement including three cycles of insertion and removal. The device described here is a promising, low-cost method for real-time adherence assessment in clinical trials involving medicated intravaginal rings or other intravaginal devices

    Magnetoroton instabilities and static susceptibilities in higher Landau levels

    Get PDF
    We present analytical results concerning the magneto-roton instability in higher Landau levels evaluated in the single mode approximation. The roton gap appears at a finite wave vector, which is approximately independent of the LL index n, in agreement with numerical calculations in the composite-fermion picture. However, a large maximum in the static susceptibility indicates a charge density modulation with wave vectors q0(n)1/2n+1q_0(n)\sim 1/\sqrt{2n+1}, as expected from Hartree-Fock predictions. We thus obtain a unified description of the leading charge instabilities in all LLs.Comment: 4 pages, 5 figure
    corecore