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Magnetoroton instabilities and static susceptibilities in higher Landau levels
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We present analytical results concerning the magnetoroton instability in higher Landau levels
(LL’s) evaluated in the single-mode approximation. The roton gap appears at a finite wave vector,
which is approximately independent of the LL index n, in agreement with numerical calculations
in the composite-fermion picture. However, a large maximum in the static susceptibility indicates
a charge-density modulation with wave-vectors q0(n) ∼ 1/

√
2n+ 1, as expected from Hartree-Fock

predictions. We thus obtain a unified description of the leading charge instabilities in all LL’s.

PACS numbers: 73.21.-b, 73.43.-f, 73.43.Lp

The complex behavior of two-dimensional electrons in
a perpendicular magnetic field remains to be fully under-
stood. If the electrons are restricted to one of the two
lowest Landau levels (LL’s), the system exhibits the frac-
tional quantum Hall effect (FQHE). This behavior can-
not be explained in the framework of the Hartree-Fock
approximation (HFA), which predicts a charge-density-
wave (CDW) ground state1 rather than a homogeneous,
incompressible liquid of strongly correlated electrons.2

On the other hand, HFA does appear to capture the
physical properties in higher LL’s as shown by recent
experiments3 at filling factors ν = 9/2, 11/2, ..., which
confirm the predictions that the ground state of this sys-
tem is a unidirectional CDW (“stripes”).4

Here we present a method which unifies the physics
of electrons in the lowest LL’s with that in higher LL’s.
By studying the low-energy collective excitations in the
single-mode approximation (SMA), we show that the
magnetoroton minimum, which indicates an instability
of the incompressible liquid towards Wigner crystalliza-
tion in the lowest LL’s,5,6 in fact indicates an incipient
CDW instability in higher LL’s. In order to observe this
feature, it is not sufficient to evaluate the energy disper-
sion of the collective excitations, as performed in previous
works,6,7 but one must consider the static susceptibility.
As we will show, the dispersion always presents a mag-
netoroton minimum at a wave vector q ∼ 1 (in units of
the inverse magnetic length lB), essentially independent
of the LL index n. However, the static susceptibility
exhibits a maximum at q ∼ 1 for the lowest LL’s, a sig-
nature of the Wigner crystal (WC) instability, whereas
the maxima in higher LL’s arise at q0(n) ∼ 1/

√
2n+ 1,

a feature predicted in the HFA for the CDW phase.4

The FQHE phenomenon at filling factors ν = 1/(2s+
1), with s being an integer, was first explained by
Laughlin2 using trial wave functions. These many-body
wave functions describe electrons attached to 2s+1 vor-
tices, and this attachment leads to a minimization of the
Coulomb energy, which is the only energy scale in the
problem. Later, Jain8 proposed a generalization of the
trial wave functions, which describe the FQHE at filling
factors p/(2ps ± 1), where the most prominent plateaus
are observed experimentally (p is an integer). The FQHE
is understood as an integer quantum Hall effect of com-

posite fermions (CF’s) subject to a reduced magnetic field
and filling p CF-LL’s. These new particles are interpreted
as electrons bound to 2s vortices, and the Laughlin states
are obtained when the CF’s populate the lowest CF-LL.
If one neglects LL mixing, the underlying Hamiltonian

describing the low-energy physics of spin-polarized elec-
trons in any LL n is given in terms only of the Coulomb
interaction by

Ĥn =
∑

~q

v(q) [Fn(q)]
2
ρ̄(−~q)ρ̄(~q), (1)

where v(q) = 2πe2/(ǫq) is the Fourier transfor-
mation of the Coulomb interaction and Fn(q) =
Ln(q

2/2) exp(−q2/4) is the form factor in terms of La-
guerre polynomials arising from the electron wave func-
tions in the nth LL. The operators ρ̄(~q) are the projected
Fourier components of the electron density, and obey the
commutation relations

[ρ̄(~q), ρ̄(~k)] = 2i sin

(

(~q × ~k)z
2

)

ρ̄(~q + ~k).

LL mixing in the limit where the cyclotron gap h̄eB/m
is large compared to the characteristic Coulomb energy
e2/(ǫlB) may be taken into account in the form of a
screened interaction potential v(q) = 2πe2/ǫ(q)q with
the dielectric function ǫ(q).9 This modification is signif-
icant only in the vicinity of a characteristic wave vec-
tor q = 2.4/

√
2n+ 1. In the following we will neglect

this screening because it is unimportant in determining
the behavior of electrons in higher LL’s.10 Note that the
Hamiltonian (1) allows one to describe electrons in any
LL n in terms of electrons in the lowest LL interacting
via a modified potential vn(q) = v(q)[Fn(q)]

2.
To describe the collective excitations of electrons in the

FQHE regime, Girvin et al.
5 used the SMA, in which the

excited state is given by

|ψ2s+1
~q 〉 = ρ̄(~q)|Ω2s+1〉.

The energy dispersion of the excitations is

∆2s+1(q) =
〈ψ2s+1

~q |Ĥ − E2s+1
0 |ψ2s+1

~q 〉
〈ψ2s+1

~q |ψ2s+1
~q 〉

,
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where E2s+1
0 is the energy of the Laughlin state |Ω2s+1〉.

This energy remains finite at any wave vector, as ex-
pected for an incompressible ground state, but has a
minimum at a nonzero value of the wave vector. This
magnetoroton minimum is interpreted as the precursor
of a WC instability because it matches the reciprocal-
lattice vector of the WC. The WC is expected to be the
true ground state at very low filling factors ν, where the
average distance between electrons exceeds the spatial
extent l ∼ lB of the single-particle wave functions. With
increasing s, the gap at the magnetoroton minimum de-
creases, indicating that the WC becomes energetically
more favorable. But in the SMA the gap never vanishes,
so one would expect the Laughlin state to be the true
ground state even at very low filling factors (large s).
However, Kamilla and Jain11 have shown that the SMA
overestimates the gap at the magnetoroton minimum and
fails at larger wave vectors. They compare the SMA to
a description of the collective excitations as magnetoex-
citons of CF’s. The excited state is given by12

|ψCF−exc
~q 〉 = Pρp→p+1

~q |Ωp,s〉,

where |Ωp,s〉 is the CF ground state, in which CF’s con-

taining 2s vortices populate p CF-LL’s, and ρp→p+1
~q cre-

ates a particle-hole pair of wave vector ~q, with the particle
situated in the (p+ 1)th CF-LL and the hole in the pth.
P is the projection operator to the lowest LL. Even if it
is not evident how to relate the phononlike excitations
introduced in the SMA to the CF magneto-excitons, the
two have been shown to coincide in the limit q → 0.12 In
the CF picture one finds that for ν = 1/9 and lower fill-
ing factors the collective excitations at the magnetoroton
minimum have a lower energy than the Laughlin state.
This indicates that the WC is the true ground state of
the system in the dilute limit.11

The question of whether the FQHE states in higher
LL’s become unstable towards a CDW was discussed by
Scarola et al.

7 using similar arguments as for the WC
instability. The authors found that the CF’s with two
vortices (2CF’s) are unstable for n ≥ 2, because the
CF excitons have a lower energy. However, the insta-
bility is still found at wave vectors of order 1, and not
at the characteristic wave-vectors q0(n) ∼ 1/

√
2n+ 1 as

expected for the CDW. Their second remarkable result
was that excitons of CF’s with 4 or 6 vortices (4CF’s or
6CF’s) show a finite gap at all wave vectors for the LL’s
n = 2 and n = 3. This supports the conjecture that
the FQHE could be found in ultrahigh mobility samples
around ν̄ = 1/4 or ν̄ = 1/6 in higher LL’s, where ν̄ now
denotes the filling factor of the last LL.13

Here, we present analytical results for the SMA in
higher LL’s. Studies for n = 1 were first performed nu-
merically by MacDonald and Girvin.6 The phononlike
collective excitations in a higher LL are described by the
wave function

|ψ2s+1
n,~q 〉 = Fn(q)ρ̄(~q)|Ω2s+1〉,

where we have made use of the projection scheme pre-
sented above. One finds for the energy dispersion

∆
(n)
2s+1(q) = 2

∑

~k

v(k) [Fn(k)]
2 sin2

(

(~q × ~k)z
2

)

×e
|~q+~k|2/2s2s+1(~q + ~k)− ek

2/2s2s+1(~k)

eq2/2s2s+1(~q)
,

where s2s+1(~q) is the projected static structure factor of
the (2s + 1)-Laughlin state. The structure factor is the
Fourier transformation of the pair distribution function,
which may be calculated using Monte Carlo integration.5

The latter may be expressed as the series14

g2s+1(r) = 1− e−r2/2

+

∞
∑

m=0

2

(2m+ 1)!
c2s+1
2m+1

(

r2

4

)2m+1

e−r2/4,

which leads to the formula

s2s+1(q) =
2s

2s+ 1
e−q2/2 +

4

2s+ 1

∞
∑

m=0

c2s+1
2m+1L2m+1(q

2)e−q2

for the projected static structure factor. In contrast to
Ref. 5, where the expansion coefficients c2s+1

2m+1 were ob-
tained by a fit to the Monte Carlo results, here we use
the following sum rules as determining equations for the
coefficients,

∞
∑

m=0

c2s+1
2m+1 = −s

2
,

∞
∑

m=0

(2m+ 2)c2s+1
2m+1 = −s

4
,

∞
∑

m=0

(2m+ 3)(2m+ 2)c2s+1
2m+1 =

s2

2
,

c2s+1
2m+1 = −1 for m < s.

Coefficients with an index m ≥ M = 3 + s, which is
the maximal index one can determine in this procedure,
are set to zero. The first three sum rules are due to
charge neutrality, perfect screening, and a compressibility
sum rule, respectively. The last condition is given by
the repulsion of the electrons at short distances, where
g(r) ∼ r2(2s+1).14 The results obtained in the lowest LL
for pair distribution function, projected structure factor,
and energy dispersion (see curves in crosses in Fig. 1) are
in good agreement with Monte Carlo calculations.
In higher LL’s (see Fig. 1), we obtain the following re-

sults: for ν̄ = 1/3 (s = 1), the gap at the roton minimum
is largest in the lowest LL (n = 0), n = 1 and n = 2
determine an intermediate region (not shown) where the
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FIG. 1: Energy dispersions for ν̄ = 1/3 (a) and ν̄ = 1/5 (b).

SMA breaks down, and for n ≥ 3, the roton gap de-
creases continuously. At ν̄ = 1/5 (s = 2), the roton gap
increases from n = 0 to n = 1, the intermediate region
is found at n = 3 and n = 4, and for n ≥ 5, we observe
the decrease of the gap. The same qualitative behavior
is found for ν̄ = 1/7 (s = 3) with a maximal roton gap
in the n = 3 LL, the breakdown of the SMA at n = 4
and n = 5, and the final decrease for n ≥ 6 (figure not
shown). For ν̄ = 1/5 and ν̄ = 1/7, the roton gap first in-
creases with increasing n [see the n = 0 and n = 1 curves
in Fig. 1(b)] due to the fact that the system is further
away from the WC regime. The WC transition appears
at ν̄WC(n) ∼ 1/(2n + 1) because the average distance
between electrons must be considerably larger than the
size of the wave functions, which scales as

√
2n+ 1 in

higher LL’s. Therefore, the WC instability indicated by
the roton gap is less pronounced.

For ν̄ = 1/5, we find a second minimum in the disper-
sion relations at q ∼ 2.5, see Fig. 1(b). This minimum
is already present in the lowest LL.15 However, the SMA
is known to be less reliable at larger wave vectors, and
for this reason no results were shown in Ref. 5 at q > 2.0
for ν̄ = 1/5. The second minimum also arises in numer-
ical calculations within the CF picture, which is more
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FIG. 2: Static susceptibilities for ν̄ = 1/3 (a), ν̄ = 1/5 (b),
and ν̄ = 1/7 (c).

accurate in the large-q limit.11

Note that we do not find the signature of a CDW state
in the dispersion relation of the collective excitations, be-
cause the magnetoroton minimum occurs at wave-vectors
q ∼ 1, independent of the LL. This is in agreement with
the results found in the CF picture.7 The fact that we
obtain the most stable ν̄ = 1/7 FQHE state in the n = 3
LL, and not for n = 2,7 is probably due to the proximity
to the intermediate region in which the SMA becomes
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less reliable. Breakdown of the SMA in the intermediate
region is expected to be due to a numerical effect, the
origin of which is as follows: the gap at q = 0

∆
(n)
2s+1(q = 0) ∝

∞
∑

m=0

c2s+1
2m+1I

n
2m+1 (2)

may be calculated analytically using the integrals

Ink =

∫ ∞

0

dq
{

k(k − 1)Lk−2(q
2) + k(q2 − 2k)Lk−1(q

2)

+

[

q4

4
− (k + 1)q2 + k(k + 1)

]

Lk(q
2)

}

[Fn(q)]
2 e−

q
2

2 .

Inspection of In2m+1 as a function of m reveals that the
integrals are initially negative, and decrease until a min-
imum is reached around n ∼ m. In2m+1 then jumps
to large positive values before decreasing again towards
zero. It is therefore in the region n ∼ m that the gap
at q = 0 [Eq. (2)] is most sensitive to approximations
made in determining the coefficients c2s+1

2m+1, either nu-
merically or in the present approach. Because we have
set c2s+1

2m+1 = 0 for m > M , it is in the intermediate region
defined by n ∼ M that the results of the SMA become
unreliable even in the small-q limit.
However, the essential aspect of this work is that even if

one does not find any signature of the CDW in analyzing
the position of the magnetoroton minimum, it can in fact
be seen in the static susceptibility calculated in the SMA,

χn
2s+1(q) = −2

sn2s+1(q)

∆n(q)
= −2

s2s+1(q)[Ln(q
2/2)]2

∆n(q)
,

where sn2s+1(q) is the static structure factor projected to
the LL n. Girvin et al.

5 have already emphasized that

the maximum arising in the static susceptibility also in-
dicates the WC instability in the lowest LL. Because in
higher LL’s the expression for χn

2s+1(q) is essentially the
same as for the lowest LL multiplied by the Laguerre
polynomials of the form factor, the position of the maxi-
mum now scales as q0(n) ∼ 1/

√
2n+ 1 as expected for a

CDW instability (see arrows in Fig. 2).

Note that this interpretation of the CDW in higher
LL’s as arising from the overlap between wave functions
described by the form factor Fn(q) is in agreement with
the ground-state calculations in the HFA.4 At the wave
vectors where the Laguerre polynomials have nodes, the
repulsive Hartree potential vanishes and only the attrac-
tive exchange interaction remains finite. This gives rise
to an effective attraction between electrons in the top-
most LL at the wave-vector q0(n) of the CDW.

In conclusion, we have found a tendency of the FQHE
states described by Laughlin’s wave functions to form a
CDW in higher LL’s. The analytical calculations were
performed within the SMA. The tendency toward CDW
formation cannot be observed if one investigates the mag-
netoroton gap in the dispersion of phononlike collective
excitations, but becomes apparent only in the static sus-
ceptibility, which exhibits maxima at the expected CDW
wave-vectors q0(n) ∼ 1/

√
2n+ 1. Our results thus con-

firm the prediction of CDW formation in higher LL’s in
the framework of4 HFA and provide a unified description
for the WC and CDW instabilities of all LL’s.
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