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Abstract

The problem of the determination of the minimum energy configuration of an arrange-
ment of

�
point particles under the interaction of their interatomic forces is discussed. The

interatomic forces are described by classical many body potentials. Different optimisation
methods are considered, multi level single link, topographical differential evolution and a
genetic algorithm but it is shown that genetic algorithms combined with an efficient local
optimisation method is especially quick and reliable for this task. In addition to comparing
some different optimisation methods, the structures of clusters of atoms described by inter-
atomic potential functions containing up to a few hundred atoms are calculated including
some with some special symmetries. A number of applications are given including cova-
lent carbon and silicon clusters, close-packed structures such as argon and silver and the
two-component carbon-hydrogen system.

Keywords: Optimisation, Atomic Clusters, Potential Energy Surfaces, Many-body Potentials.

1 Introduction
This paper addresses the problem of determining the lowest energy configuration of a system of
particles. This is an old problem related to that of determining the optimal arrangement of close-
packed spheres, which has attracted the attention of pure mathematicians for many years. The
“orange box” arrangement is generally thought to be the best way of packing the most number
of spheres together into the least possible volume but a formal proof of this has proved to be
very difficult. In this arrangement, the first layer consists of spheres in a close-packed triangular
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lattice. The second layer is formed by placing a sphere in the centre of the depressions left in the
first layer, forming a lattice shifted with respect to the first layer. In the third layer the spheres
can lie either directly above those in the first layer or in the unused depressions from either
layer. In the first case this is known as hexagonal close packing (hcp) and in the second face-
centred-cubic (fcc) because the spheres are arranged in a periodic cubic unit cell at the faces
of a cube. In many materials, especially metals and frozen rare gases, the atoms also arrange
themselves into this fcc structure. For other types of materials where directional bonding is
important, such simple close-packed structures are not so common and complex geometrical
arrangements occur depending precisely on the nature of the chemical interactions.

In this paper we address the problem from another angle. The spheres are now considered to
be atoms that are regarded as point particles which interact through their interatomic forcefields.
The forcefields are given as the starting point for the problem and are determined from inter-
atomic potentials. The problem is therefore to find the optimal arrangement, i.e. the minimum
potential energy, when � such particles interact. At the most sophisticated level, the forcefields
are determined by the solution of Schrödinger’s equation under various levels of approximation.
This is a very complicated and time-consuming procedure which although becoming more stan-
dard can still take many days of computing time even to calculate the forces between 10’s of
atoms.

To overcome this problem, semi-empirical interatomic potential functions have been de-
veloped. They are of various forms and levels of detail depending on the type of material. For
example, covalent materials such as silicon and carbon have strong directional bonds and can be
modelled by so-called bond order potentials [1, 2, 3]; metals can be described by a model which
describes the atomic nucleii as being embedded in a sea of electrons, the so-called embedded
atom potentials [4, 5]. Some rare gases [6] can even be described by simple potentials that are
pairwise additive such as the well-known Lennard-Jones potential. Multi-component materials
can also be described. For more details on the forms of these types of potential function see the
review article by Carlsson [7].

The energy minimisation task is an extremely challenging global optimisation problem for
even moderately sized clusters, because the number of variables as well as the number of local
minima are very high. The problem can therefore be used as a sample test problem for global
optimisation. In order to calculate the minimum potential energy for small number of particles
using some of the potential functions described below, we first attempted to use several recent
stochastic global optimisation techniques. They are aspiration based simulated annealing [8],
multi-level single linkage [9], topographical multi-level single linkage [10] and controlled ran-
dom search [11]. Our numerical experiments with these algorithms suggested that they are
successful and robust for problems with a small number of dimensions as well as problems
with a small number of local minima. For problems containing up to five particles most of
these algorithms were robust in locating the best minimum. However, as the number of par-
ticles increases their robustness diminishes. We will present the results of these algorithms in
the comparison section. The results obtained by the algorithms suggested that for the energy
minimisation problems with high dimensions, special types of algorithms are required. There-
fore in this paper we will concentrate on two recent global optimisation techniques designed for
energy minimisation problems. These are the topographical differential evolution [12] and the
genetic algorithm [13]. There are several genetic algorithms have been designed for chemical
cluster optimisation previously. For more details of these see the review articles by Judson [14]
and [15].

The most extensively tested energy minimisation problem is that using the Lennard-Jones
potential. Extensive numerical studies have been carried out on this pair potential function, for
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some recent studies see [16, 17, 18]. The number of local minima for this problem is believed
to be exponential in the number of atoms or molecules. The Lennard-Jones (L-J) function is
simple to state and easily programmable, yet challenging and complex in the behavior of its
solutions.

2 Potential functions
In this section, we describe some well known potential functions that can be used as challenging
test problems for global optimisation.

2.1 Lennard-Jones potential function
The Lennard-Jones problems assumes that the potential energy of a cluster of atoms is given
by the sum of the pairwise interactions between atoms, with these interactions being Van der
Waals forces given by the Lennard-Jones ������� potential. That is, if we define the position of
the molecular cluster of �
	 atoms by�
�������������������������������
where �� is a three-dimensional vector denoting the coordinates of the !#"%$ atom, then the poten-
tial energy function in non-dimensional form [6] is

& �'�(�)��*,+ � �- %.(�  0/��-1 .(� 2 �4356 1 � �7� � �8356 1 �:9<; � � �
where 56 1 �>= �� � � 1 = is the Euclidean distance between �� and � 1 , 3 and + are constants that
depends on the type of atom.

2.2 The embedded atom potential function for metals
In the framework of the embedded atom formalism, the energy of an assembly of �?	 atoms is
given by & ���(�@� ��

�A�- 7B. 1�C  1 �756 1 � �
���- %.(� � �A�-1 .(�ED  1 �756 1 ���,FG

where C  1 is the pairwise repulsive part of the potential energy and the term containing D �75H 1 �
in the many body isotropic, cohesive term. D �75� 1 � itself is a pairwise additive function similar
to the C  1 term and the Lennard-Jones potential described above. This form of potential energy
function has been used to describe both fcc, hcp and also body-centred-cubic materials, depend-
ing on the form of the functions C and D and the parameters that define them. See for example
[5] which gives these functions and parameters for some fcc metals.

2.3 The Tersoff potential for carbon and silicon
The potential function due to Tersoff was originally designed for atomic interaction of silicon
atoms where there is strong covalent (i.e directional) bonding. The many-body term is no longer
isotropic as in the case of the embedded atom potential. Tersoff considered two different pa-
rameterisations of silicon which we will call, IJ! ��KL� and IJ! �7MN� . These have slightly different
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properties with regard to surfaces and bulk elasticity. There is also a parameterisation to de-
scribe carbon. The binding energy in the Tersoff formulation [2] is written as a sum over atomic
sites in the form &  �� �� -1 B.O HPRQ �756 1 ��� C�S �75� 1 � �UT  1 C�V �756 1 ���@� W ! � � �
where 56 1 is the distance between atoms ! and X , C(S is a repulsive term, C�V is an attractive term,PRQ �756 1 � is a switching function that reduces the potential smoothly to zero at large distances andT  1 is a many-body term that depends on the positions of atoms ! and X and the neighbours of
atom ! . More details of each of these quantities can be found in [2]. The many-body term T  1 is
based on atom ! , so that in general T  1NY� T 1  . The term T  1 is given byT  1 �Z� �\[U]�^ F`_ ^ F 1 � /��ba`� ^ F �7c,�
where d � and ] are known fitted parameters [2]. The term _  1 for atoms ! and X (i.e., for bond!0X ) is given by _  1 � -e B.O 0f 1 PRQ �756 e �<gh�bi6 1 e �Oj�kmlonqp�rr �756 1 � 56 e �:rtsu� ��*v�
The term _  1 describes the contribution of the neighbours of the atom ! , _  1 increases as the
number of w atoms increases but the term T  1 decreases as _  1 increases. The exponential term
in �7*v� is designed to reduce the contribution of bonds with length greater than 5H 1 , so that the
distant neighbours of ! have a reduced contribution to the bond order term. The term ix 1 e is the
bond angle between bonds !0X and !#w and g is given bygh�bi6 1 e �8� �\[zy �|{x}v� �uy �|{A~�},� [ ��� ���6�E� i6 1 e � �q�h� �b�E�
The parameter � is the cosine of the optimum bond angle and y and

}
control the influence of

bond angles on the many-body term. The quantities p r , y � } and � which appear in ��*v� and ���E�
are also known fitted parameters. The terms ChS �756 1 � and C�V �75� 1 � are given by

C�S �756 1 ��� K�� /�� F��b� � � �E� �C�V �756 1 ��� M�� /�� G �b� � � �E� �
where K��tMo�|ph� and p�� are given fitted parameters. The switching function PEQ ��56 1 � restricts the
potential calculations to nearest neighbours only and ensures that atomic interactions decay
smoothly to zero as the seperation distance increases from � � to � � . It is given by

PHQ ��56 1 �@� ��� ��
� � 56 1�� � ��� � �� ���0� ~ � ��56 1 �U� � { � � � �u� �:� � � � � �¡56 1 � � � �¢ � 56 1�£ � ��� �b¤E�

where � � ¢ � �A� � � [¥� �|� . The parameters for the different materials are given in the original
references.

2.4 Brenner hydrocarbon potential
The binding energy for Brenner hydrocarbon potential [19, 20] is similar to Tersoff potential
and is given by &  ¦� �� -1 B.O PRQ �756 1 � n C�S ��56 1 � �¨§T  1 C�V ��56 1 � s � W ! �7©,�
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The subscriptions ! and X refer to first neighbour atoms separated by the distance 5H 1 . Here we
do not give all the detailed parameters and functions for the potential which can be found in the
original papers. Instead we point out only the principle differences between this and the Tersoff
potential. The attractive and repulsive terms in Brenner potential are given by

C�S ��56 1 ��� ªN«I¬�­� j|kmlon �®TJ¯ �EI ��56 1 �u�±° �<s �b² � �
C�V ��56 1 ��� I ª?«I¬�­� j|kml´³ �®T)µ � { I ��56 1 �U�±° �#¶ �7² � �

where ªN« is the energy at a separation ��° and these are known as dimer energy and the dimer
separation respectively, and I and T are constants. The cut-off function P,Q �75� 1 � restricts the
potential to nearest neighbour interactions as before.

Brenner’s first correction is to take into account non-local effects which means quantitative
information on the second neighbours of both atoms ! and X and this is used to account for
conjugated versus non-conjugated double bonds (see Figure 1).

I J

K

K

M

M

M

M

L

L N

N

N

N

Figure 1: In the graphite (hexagonal lattice) structure, the energy of the central bond between
atoms ! and X is a function of the positions of ! and X as well as their first neighbour atoms,
excluding ! and X (the four positions: two · s and two ¸ s) and second neighbour atoms (the
eight positions: four ¹ s and four � s).

The bond order function §T  1 , given below, is the average of terms associated with atoms !
and X in the bond !ºX plus a correction.§T  1 � �� � T  1 [zT 1  �� [ ��(»  1 n � " � � "1 � � Q « ^ 1 1 s � � � ¢ �
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The average term here is to ensure that all first bond neighbours are accounted for; T  1 takes
into account the first neighbours of atom X and T 1  accounts for first neighbours of atom ! . The
contribution of atom ! to the bond order term is thus given by

T  1 �½¼ �\[ _  1 [¡¾  1 n �À¿ � �ÀÁ sHÂ /�Ã � � � �Ä� �
Thus the Brenner potential does take into account conjugation between atoms, a feature that
was missing from the original Tersoff formulation.

3 Global optimisation algorithms
In this section we describe four algorithms that are suitable for use in solving the problem
described above. They are multilevel single linkage (MSL) [9], topographical multilevel single
linkage (TMSL) [10], topographical differential evolution (TDE) [12] and the genetic algorithm
(GA) [13]. All are iteration (or generation) based algorithms. Of these algorithms, MSL and
TMSL have a similar algorithmic structure. They generate random points from the search space
per iteration. On the other hand, TDE and GA do not generate random points per iteration. They
maintain a set (population set) of candidate solutions (points in the search space), the size of
which does not vary with iteration. They are known as population based algorithms. Although
they do not generate random points per iteration, they create new points, known as the children,
using some genetic operators such as crossover and mutation. Newly created children in an
iteration replace bad parents (bad candidate solutions) in the population set. Initial points in the
population set are generated randomly within the search space, say Å .

3.1 The MSL and TMSL algorithms
MSL and TMSL are stochastic algorithms in the sense that they have probabilistic convergence
guarantee [9, 32]. The only difference between the two is that MSL uses a special clustering
technique, called ‘multilevel single linkage’ and TMSL uses a ‘topographical clustering tech-
nique’, per iteration. Suffice it therefore to describe one algorithm, e.g. the MSL algorithm.

In the X -th iteration of the MSL algorithm, � new sample points are randomly generated
from the search space, Å . These points are then added to the the � Xo�Æ� � � points generated
in all previous iterations, making the sample point of size X�� at the X -th iteration. The sample
size X�� is then reduced by removing the � ���z] �:� Xv� points with the highest function values.
Typically, ] �
� ¢ � � � is used. A number of clusters at the X -th iteration is then formed using] � Xv� points. A local search is then performed from a potential point of each cluster. The MSL
algorithm stops when a convergence criterion is met. In the topographical clustering used by
TMSL, the centre of a cluster is known as the ‘graph minimum’. TMSL performs local searches
from the graph minima of clusters.

Notice that clusters formed by the MSL and TMSL methods have essentially a different
meaning from the cluster of atoms or particles. A cluster of atoms is a point in the search
space Å where the minimum is sort. On the other hand, the clustering involved in either of
the algorithms is to group together a number of (reduced) sample points in the search space
where each point in a group is a cluster of atoms. Therefore, if �Ç� ���È���É�������������É���A��� then�ÀÊ ÅÌËÎÍm� r �A� and �� ÏÊ Í�� r .
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3.2 Topographical differential evolution (TDE)
Unlike the GA, TDE uses two population sets. Initially, two sets I � and I � , each containing w
points, are generated in the following way; iteratively sample two points from the search region,Å , the best point �  going to I � and the other �  ÑÐ to I � . The process continues until each set
has w points. The TDE procedure then gradually drives both the sets I � and I � towards the
global minimiser through the repeated cycles of mutation, crossover, acceptance and replace-
ment. In each cycle constituting a generation or iteration, w competitions are held to determine
the members of I � and I � for the next generation. The ! -th ( ! � � � � �6������� w ) competition is
held to replace �  in I � . Considering �  as the target point, a trial point Ò  is found from two
points (parents), the point �  , i.e., the target point and the point Ó�  determined by the mutation
operation.

In its mutation phase TDE randomly selects three distinct points �AÔ�Õ �bÖ ���vÔ�Õ �<Ö and �vÔ�Õ r Ö from
the current set I � . None of these points should coincide with the current target point �  . The
weighted difference of any two points is then added to the third point which can be mathemati-
cally described as : Ó�  ��� Ô�Õ �bÖ [ » �'� Ô�Õ �<Ö � � Ô�Õ r Ö � � ��� �
where »Ø× ¢ is a scaling factor, and � Ô�Õ �bÖ is known as the base vector. If the point Ó�  {Ê Å then
the mutation operation is repeated.

The trial point Ò  �Z� Ò  � � Ò  � �6�����6� Ò  � � � is found from its parents �  and Ó�  using the following
crossover rule. �
	 random numbers, � 1 (X � � � � ��������� ��	 ), in (0,1) are generated repeat-
edly. If the number is greater than 0.5 then the corresponding component of Ò  is taken from�  �Ù�'�  � �É�  � ���������É�  �A� � else it is taken from Ó�  �Ú� Ó�  � � Ó�  � ��������� Ó�  �A� � . The X -component of Ò  is
therefore calculated as follows:

Ò  1 �ÜÛ Ó�  1 if � 1 � ¢ � ��  1 if � 1 £ ¢ � � � � � c,�
In the acceptance phase, if the trial point Ò  , corresponding to the target �  , does satisfy the

criterion P � Ò  �
� P �'�  � then the point Ò  replaces �  in I � , if however, Ò  does not satisfy the
above criterion then it is not abandoned altogether, rather it competes with its corresponding
target �  Ð in the set I � . If P � Ò  �L� P ���  Ð � then Ò  replaces �  Ð in I � . The potential points in I �
then can be used for further exploration and exploitation.

As the search proceeds TDE introduces two measures to lessen the chance of missing the
global minimiser in the driving process of I � and I � . They are : (a) after each ¹ iterations,
determine the graph minima 1 using the �ÞÝ best points from I � and then perform a local search
from each of the graph minima found, and (b) the replacement of the worst �NÝ points in I � with
the best �ÞÝ points in I � immediate after the local searches have been performed. The graph
minima used for local search are the centres of the topographical clusters.

The benefits of (a) are that a local search only starts from a potential point with low function
value and these potential points are seperated by higher regions. Since the points in I � gradually
shift their position these periodically scrutinised local searches will enhance the robustness of
the TDE algorithm in locating the global minimum. The benefits of (b) are search diversifica-
tion and exploitation. TDE repeatedly finds the graph minima locally using �NÝ best points withwÄÝ nearest neighbours. The best minimum found in the local search phase is recorded and is

1A simplified description of how to find the graph minima is the following: For each point in the sample of
size ß)à ( ß)à@áoâ ) the â�à nearest neighbour points are determined ( â6à@á8áÎß)à ). Those points for which all â�à near
neighbours are inferior points, i.e., the function values are larger, are the graph minima.
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further updated in the next phase of local search. If a consecutive number, say ã , of local search
phases does not produce any better minimum value than the previously found best minimum
then the algorithm can be terminated. The step by step description of the new algorithm is as
follows.

The TDE Algorithm

Step 1 Determine the initial sets I �Øäx� � �É� � �6�����6�É� eEå and I�	 �Zäx� ��Ð ��� �`Ð ���������É� e Ð å with points
sampled randomly in Å . Initialize the generation counter !#Ý and the local phase counter ã
to zero.

Step 2 If the stopping condition, ã £ ã:æÏ	:ç , is satisfied then stop.

Step 3 For each �  Ê I � , determine Ò  by the following two operations:è Mutation : Randomly select three points from I � except �  , the running target and
find the second parent Ó�  by the mutation rule � �R� � .è Crossover : Calculate the trial vector Ò  corresponding to the target �  from �  andÓ�  using the crossover rule � � c,� .

Step 4 Update both the sets I � and I � for the next generation using the acceptance rule: replace
each �  Ê I � with Ò  if P � Ò  �é� P ���  � otherwise replace �  0ê Ê I � with Ò  if P � Ò  �é� P ���  ÑÐ � .
Set !bÝ�ë � !bÝ8[�� . If !bÝ ì ¢ �<í ��îÞ¹ � then go to Step 5, otherwise go to Step 2.

Step 5 Find the graph minima of the function, P ���(� , using the best ��Ý points in I � and perform
a local search starting from each graph minimum. Keep a record of the very best minimum
found so far, replace the worst �
Ý points in I � with the best �ÞÝ in I � . If the current phase
of local minimisation produces a better minimum than the current best minimum then setã � ¢

otherwise set ãïë � ã¦[ð� . Return to Step 2.

For the cluster optimisation problem, the TDE algorithm remains the same except that each
point in I � or I � represents a cluster of atoms with corresponding energy or function value. The
crossover operator (13) is adjusted accordingly. In particular, the X component of the vector Ò  
is now the X atom of the cluster Ò  .
3.3 A genetic algorithm for structure calculations
General description
A GA is a global optimisation procedure that uses an analogy of the genetic evolution of biolog-
ical organisms [21, 22]. It is an heuristic search procedure that modifies function values encoded
as binary strings, through the application of predefined reproduction operators in a stochastic
manner. The binary string, referred to as a chromosome, is divided into individual sections
called genes. The algorithm has some similarities with the TDE method and pseudocode for the
genetic algorithm is shown below.
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Pseudocode for the genetic algorithm

Step 1 Initialise population() of size d�ñ�ò|ñ�ó�!�ô �
Step 2 while[ not converged ] do

Step 3 assign population fitness()

Step 4 do from 1 to d�ñ�ò|ñ�ó�!�ô �
select parents( õ � , õ � )
reproduction( õ � , õ � ,child)

enddo

Step 5 select next generation()

Step 6 endwhile

There is an absolute measure of quality also assigned to an individual called the fitness P
that is a function of the genes. When designing a GA to search for the molecular structure with
minimum energy an individual � 	 from the population corresponds to a molecular configuration
and a gene is the atomic co-ordinates of an atom, binary encoded. The chromosome of � 	 is the
string of genes defining the molecular structure and the fitness measure of � 	 is the potential
energy.

Following the initial random generation of a population, the reproductive phase of the GA
starts by selecting two parents õ � and õ � . This choice is weighted depending on the fitness of
the parents. With two parents selected the binary digits which encode the string are changed
in part by crossover and mutation (i.e. genes are interchanged). Crossover in its simplest form
replaces some of the digits that encode parent õ � by those of parent õ � . Mutation also changes
some of the replaced digits with a small probability and ensures that the likelihood of exploring
any subset of the search space is always non-zero. The next population is selected when there
is an equal number of ‘adult’ and ‘child’ individuals.
Parent selection
In a population õ of � parents, õ ��ö��¦��� �÷�ø�ø� ���úù , let the individuals be ordered in descending
fitness so that P ���� ��û� P ���� %ü(�É� for ! � � � �÷�ø�÷� � �ý�þ� . Further, let ñ  denote the probability
that a parent �� is selected as one of the two parents to which the reproductive operators are
applied. The probabilities ö ñ ��� �ø�÷�ø� ñ �úù such that ÿ � ñ  Ï� � , denotes the set of parent selection
probabilities which are assigned by a parent selection scheme. Our procedure is to use a binary-
tournament selection, first introduced by De Jong [21]. This method takes a random choice of 2
individuals from the population õ and selects the fitter as the parent. The selection probabilitiesñ  �� ! � � � �÷�ø�ø� � � are given by ñ  é� � � � �Ú� ! � [Æ� � { � � , for ! � � � �÷�ø�ø� � � where ÿ � ñ  \� � .
This scheme assigns a selection probability to an individual according to its relative fitness,
so that the most fit individual has a probability ñ � � � � � ����� � [�� � { � � , the second most
fit ñ �´� � � � �ý� c,� [�� � { � � and so on down to ñ � � � { � � but without requiring that the
individuals be sorted by fitness.
Reproduction
To apply the GA in the optimisation of single element molecular structures it is necessary to
give a definite meaning to each of the terms defined in the general description. The population
refers to the set of isolated � atom molecules. The fitness of an individual is the molecule’s
total potential energy and the genes define the molecular structure. It is also necessary to assign
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a potential energy per atom and the genetic encoding procedure should be such that only those
atoms X which most influence the potential energy of atom ! are located in proximity on the
chromosome. The reproduction process continues in four separate stages (a) parameter encod-
ing, (b) crossover, (c) mutation and (d) structural relaxation. Another advantage of the GA is
that the method will easily parallelise. The child production and structural relaxation from two
parents can in principle be carried out on single processors in parallel. This is the most time-
consuming part of the algorithm, the choice of parents from a given population being a very fast
process. However in this paper all the calculations were carried out on serial computers.
Basis of the algorithm
The optimisation scheme replaces a high energy region, normally less than half of the molecule,
(referred to as � ) of parent õ � with a low energy region (referred to as

�
) of parent õ � . The

algorithm also works by interchanging regions that are random and not selected on the basis
of high or low energy. In this case convergence is slower but in some rare cases better optima
are found when the energy method locates only a local minimum. For the energy selection
process both regions from the parent molecules must contain the same number of atoms. The
high (or low) energy regions were selected as follows. The use of empirical potentials allows
the definition of a potential energy per atom. Thus a high (or low) energy atom in the whole
cluster is first selected. The 2-tournament selection process was used to determine this atom.
This involved randomly selecting a subset of the cluster atoms pairwise, comparing energies and
rejecting the atom in the pair with the lowest (highest) energy until only one atom remained.
Next a plane is chosen with randomly selected position and orientation but such that � region
of parent õ � is on one side of the plane and the centre of mass c of õ � lies on the other side.
The second molecule õ � is now rotated so that it also is similarly orientated with

�
on one side

of the plane and its centre of mass on the other. The genes corresponding to the � and
�

regions
are then interchanged. The practical implementation of this step entails first choosing a location
on a molecule biased towards a high or low energy region. The vector ��� ��� � { =�� ��� = , where
h is usually chosen as the atomic co-ordinates of the highest energy atom in the region � , (or
sometimes random co-ordinates within a bond length of the high energy atom) forms the unit
normal for the dividing plane. This dividing plane is then located between c and l, where l is
a vector located in region

�
, on the other molecule in such a way as to preserve the number

of atoms. This number is not fixed but varies between 1 and � { � for � -atom molecules. A
typical value of � used for the results given in Table 1 was � �Æc ¢ . The dividing plane being
located at ��[ 5O��� �	� � where 5 is a uniform random variate. Parent õ � is rotated to align (h -
c ) with (h -l) and the region � is replaced by

�
by a simple translation. For a two component

system, the procedure is a little more complicated as the number of atoms of both species has to
be preserved. Consider the first parent õ � and let there be d � atoms of species 1 and d � atoms
of species 2 in region � . The low energy region

�
of parent õ � is chosen as before to containd � [Ìd � atoms. However there is no guarantee that d � and d � are the same in both � and

�
.

Thus the random choice of
�

in parent õ � is repeated up to a maximum of d�æÏ	<ç times. If a
configuration does not arise with d � and d � the same in both � and

�
in these d�æÏ	<ç attempts

then a strategy is implemented to change the atoms types in
�
. It was found that when applying

the method to 
Ç�z¾ systems with dhæ4	<ç � � ¢ an atomic arrangement could be found on ¤ ¢��
of occasions where d � and d � were the same in both � and

�
. In the c ¢
� of occasions where

this was not the case, the book-keeping strategy adopted was randomly to replace additional¾ atoms, preferentially those with the highest co-ordination, with a 
 atom but in the case of
additional 
 atoms to replace with H atoms preferentially those of lowest co-ordination.
Single point crossover
Crossover assembles a new child geometry from the low energy parts of both regions. This
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Figure 2: The GA implementation for molecules.

process is shown in figure 2. The crossover takes place at the point separating the genes of
} �

and
} � . The child chromosome takes the

} � genes of õ � with the
} � genes of õ � . In terms of

atom co-ordinates, the child molecule takes the geometry of its first parent except for a high
energy region which is replaced with a low energy region from the other parent. The number of
atoms replaced by this operation varies from 1 to d � depending on the value of r.
Mutation
Mutation occurs by replacing typically one or two atoms of high energy (poor placement) whilst
maintaining the total number of atoms in the molecule. The replaced atoms are not already in
the high energy region and are removed completely from the low energy region of parent õ � .
This means that the number of atoms added in the low energy region during the crossover must
be increased proportionately. We choose an effective mutation operator that randomly replaces
the genes that encode the placements of up to w atoms of the child chromosome with those from
the parent õ � . The procedure is as follows. On the new child chromosome, locate ! � � or �
or
�÷�ø�÷� w atoms with high energies �����|�A��� �ø�ø�÷� � e . Mutation occurs when ! × ¢

and then the genes
corresponding to the atoms � � �÷�ø� � w are deleted. New genes are added by effectively translating
the second parent normal to the separation plane until w more atoms lie within the appropriate
region. Typically w � ¢ � � or � . For the two component 
 �­¾ system, the strategy is a little
different. Locate only ! � � or � or

�ø�÷�ø� � � ¾ atoms with poor placement. Locate a similar set of
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 atoms that have a low number of neighbours and reassign the
� ¾ atoms randomly to points

in the neighbourhood of these 
 atoms.
Child structure relaxation
The child structures are relaxed using a local optimisation routine BFGS developed by Liu
and Nocedal [23]. This has the advantage that the memory requirements and iteration time
scale linearly with the dimension of the search space and in addition any second derivative
discontinuities in the potential energy surface do not present problems. A fixed tolerance is set
and this algorithm is iterated until the sum of squared forces is less than this tolerance.
Population replacement strategy
The GA pseudocode suggests that every generation creates � offspring from the current pop-
ulation of � adults. The question that arises is how to select the replacement generation from
this set of �Ä� parent and child structures. The strategy adopted here is to select the subset of the� most fit individuals from the current set of adults and offspring. This strategy ensures that the
increase in P �'�¦��� is monotonic, where �¦� is the most fit individual in the population. To coun-
teract premature convergence a restarting procedure was employed. If the chromosomes of the
population become identical to within a small Hamming distance (typically � � ) in insufficient
iterations to expect global convergence to have occurred, then the population is reinitialised but
keeping the chromosome of the fittest individual.

The main difference between the genetic algorithm applied to the optimisation of clusters
and the TDE method is that the TDE method contains no physical information about the system.
It samples function space rather than the space in which the atoms are distributed. On the other
hand the genetic algorithm uses a physical principle of cut and paste based on the physical space.
As a result it is much more effective at locating the global minima. If the genetic algorithm
were based on the function space instead then it would perform poorly in comparison with the
TDE method. Thus an important principle in constructing algorithms for global optimisation
problems is to use all the available information about the system rather than to treat the problem
as one of optimising a function about which nothing is known.

4 Implementation and comparisons of the algorithms
The search region Å and initial atom positions
The search region for all the problem is constructed in the following way in a Cartesian system�'� � Ò � ô � . Distances are measured in Å. The first atom is fixed at the origin. The second atom
has Ò � ô � ¢

. The � co-ordinate position due to the second atom is taken as �Ï��Ê ~ ¢ �q* � . The
third atom has ô � ¢

and the second and third variables are such that its � and Ò co-ordinates
are given by ����Ê ~ ¢ �q* � and � r Ê ~ ¢ �q* � . The coordinates of any other atom ! are taken randomly
to lie in � � * � �*�� ! � *c � ��* [ �*�� !È� *c ��� �
where � 5�� is the nearest least integer with respect to 5�Ê Í#� . For instance, three variables ( ���R�É���
and � 9 ) due to the * -th atoms lie in

~ � *A�q* � and the variables for the � -th atoms in
~ � * � � �m�É* � � � �

and so on. The entire region Å for � atoms will therefore be� � * � �* � � � *c � ��* [ �* � �Ù� *c �
� �
When the GA was applied to the large clusters a random initial distribution of atoms in Å was
chosen.
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The initial population size: It was found necessary to use a larger population size for the TDE
compared to the GA. For the TDE a population size of � � � d was found to be necessary,
where d is the number of dimensions of the problem ( d � �bc ��	 �­� ) where ��	 is the number
of atoms). For MSL and TMSL � d random points were also generated at the begining of each
iteration. However good convergence could be achieved even for large clusters using the GA
with a population size of only 30. However for comparison purposes with the small clusters the
same initial population size � � � d was also used for GA. The results generated with the larger
clusters were obtained with the more optimal value of � �Üc ¢ , which reduces the number of
function evaluations considerably.

Other parameters: TMSL and TDE require both the number of points required to calculate the
topographical cluster and the number of nearest neighbours w�Ý used to determine the centre of
the cluster. A value of w,Ý �Ç* was used throughout. A fraction of points e.g. ��Ý � ] � Xv� used
in TMSL, where X is the iteration counter and ] � was normally taken as 0.15. TDE maintains a
fixed � throughout all iterations and a value of �
Ý � ¢ � �Ä� was used. The value of ã:æÏ	:ç used
in the TDE method was set to 4 (see Step 2, Page 8) and ¹ � �xd . The same stopping condition
was used for all algorithms in Table 1. A value of » of 0.5 was found to be optimal. Other
information concerning the parameters of MSL and TMSL can also be found in [24].

A comparison of algorithms using L-J clusters: We compare TDE and GA with the multi-
level single linkage (MSL) and topographical multi-level single linkage (TMSL) algorithms
mentioned in the introduction. In a earlier study [24] it was found that MSL and TMSL are
the best performers within a number of global optimisation algorithms, e.g. controlled random
search and simulated annealing. We first compare the algorithms in Table 1 using the average
number of function evaluations (fe) and the best minimum value obtained by the algorithms.
Average fe has been obtained over 10 independent runs. The result in bracket is the number of
times the the global minimum was obtained. ��	 in Table 1 represents the number of atoms. We
have used a Pentium 4 machine with 256 MB ram and 1600 MHz Processor.

Table 1: Comparison using the Lowest Minima found
MSL TMSL TDE GA� 	 Energy (eV) fe Energy (eV) fe Energy (eV) fe Energy (eV) fe

3 -3.00(10) 1534 -3.00(10) 1326 -3.00(10) 3314 -3.00(10) 1550
4 -6.00(10) 3479 -6.00(10) 1874 -6.00(10) 4772 -6.00(10) 3673
5 -9.10(6) 12479 -9.10(10) 10721 -9.10(10) 11115 -9.10(10) 8032
6 -11.32(0) 59209 -12.30(1) 45362 -12.30(5) 59340 -12.30(10) 31395
7 -16.50(5) 131743 -16.50(4) 143733 -16.50(10) 480450 -16.50(10) 48900
8 -16.48(0) 173960 -18.05(0) 186836 -19.81(10) 773190 -19.82(10) 121247
9 -19.41(0) 595712 -19.05(0) 556624 -24.10(10) 3315810 -24.11(10) 346397

10 -19.75(0) 2783247 -19.90(0) 842733 -28.42(10) 7346875 -28.42(10) 721370

Results presented in Table 1 show that in terms of fe TMSL and GA is comparable. However,
as the number of atoms increases robustness of TMSL in terms of locating the best minimum
value falls off. GA was able to locate the best known minimum values for all cases. TDE was
able to find the best known minimum for all cases except �N	 � � . Moreover, TDE is the worst
performer in terms of fe. In Table 2, we compare the cpu times of the algorithms corresponding
to the results in Table 1.

13



Table 2: Comparison using cpu time� 	 MSL TMSL TDE GA
3 0.12 0.14 1.27 0.04
4 0.77 0.76 0.64 0.47
5 0.63 1.68 1.33 1.27
6 3.96 6.93 2.03 1.93
7 9.32 19.33 6.21 3.89
8 22.50 42.43 41.93 8.60
9 71.17 94.99 75.60 23.63

10 83.70 134.72 181.78 60.22

It is clear from Table 2 that GA is the best algorithm in terms of cpu time, even without
using the optimised population size. The worse performers are the TMSL and TDE algorithms.
These two algorithms need high cpu times due to the calculation of ‘graph minima’ at each
iteration.
Argon and silver clusters: For the problem of finding the minimum energy configurations, the
GA always outperformed the TDE method. In fact other global optimisation methods such as
controlled random search and simulated annealing were also tested and these were also found
to be inferior to the GA. An example, comparing the GA and TDE methods is also given in the
section on silicon clusters below. However there are some interesting geometrical structures that
arise with close-packed configurations. Both the embedded atom potential and the Lennard-
Jones potential result in close-packed structures and so we consider the geometries of these
together in this section. These geometries show some interesting features as the number of
atoms in the system changes. In this section all the results were calculated using the GA. Figure
3 shows some of these geometrical configurations for clusters containing 7, 38, 55, 147 and
400 atoms. The 7, 38 and 147 atom clusters have icoshedral symmetry whereas the 55 atom
cluster is a structure that is often used in nanotechnology, usually with gold atoms for a number
of interesting technological applications. The 400 atom cluster shows that when the number
of atoms is large close-packed facets along the edges of the clusters can be seen as the cluster
begins to take on the appearance of the bulk material.

The convergence of the GA is only partially dependent on the symmetry of the cluster. For
example one might expect that the symmetric clusters shown in figure 3 would be determined
quickly by the GA compared to non-symmetric clusters. This is in fact only partially the case.
Numerical experiments carried out for clusters with atoms ranging from 35-40 show that the
number of generations required to determine the minimum energy structure for the symmetric
cluster is not out of line with its neighbours. We have carried out five independent runs. The
difference is only the number of generations required from different starting conditions, not the
value of the minimum. These are shown in Table 3, where AGV represents the average number
of generations. Although with any optimisation algorithm, one can never be certain that the
global optimum has been reached, the minimum energy values given in table 3 are in line with
what would be expected. It is worth noting that because of the large number of nearby local
minima that the algorithm takes a large number of generation to fine tune. For example for the
40 atom cluster a value of -100.27 eV was obtained after 486 generations of the algorithm in
a particular run. It took a further 641 generations to reduce the energy by 0.02 eV to the final
value.
Silicon clusters: The GA and TDE can be successfully applied to the Tersoff silicon potential
for small clusters. Figure 4 shows the geometry of small IJ! clusters calculated using parame-
terisation (A). In this case cages are predicted for upwards of 4 atom clusters. The 6 and 7 atom
structures predicted are in agreement with recent experimental results [25, 26]. An interesting
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Table 3: Minimum energies of Ag clusters, calculated using an embedded atom potential.
No. of atoms in cluster 35 36 37 38 39 40

AVG 526 468 827 469 732 1118
Cluster potential energy (-eV) 86.70 89.55 92.34 95.40 97.78 100.29

example concerning the evolution of the IJ! ��� atom cluster is that two isolated I8! � and IJ! ��� atom
structures are predicted to have a lower energy with this parameterisation. The evolution of this
cluster using the GA is shown in figure 5. The minimum energy of -81.46 eV was determined
after approximately 500 generations of the algorithm starting from an initial population size of
32. The dissociation of an 18 atom cluster occurs because the silicon potential is many-body
and depends on the local co-ordination and bond angles and not just on the proximity of the
atoms. Such a dissociation would not occur with a Lennard-Jones or EAM potential. Although
the global minimum energy configurations for the IJ! ��� cluster with the Tersoff potential is two
separated clusters, Goedecker and et.al. [27] have found a I8! ��� cluster using density functional
theory and a new ‘dual minima hopping method’ to locate minima, which is a single entity and
not divided. They did not calculate the energies of the isolated IJ! � and IJ! ��� clusters to see if
these produced a lower energy. In any event the Tersoff potential is known to be less accu-
rate than density functional theory for small clusters as it was fitted to bulk material properties.
There is no reason other than available computing power why the genetic algorithm might not
be applied to ab initio calculations such as those described in [27].

       400 atoms

       55 atoms    147 atoms

      7 atoms    38 atoms

Figure 3: The geometry of the closed-packed structures containing (a) 7, (b) 38, (c) 55, (d) 147
and (e) 400 atoms.
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Larger clusters containing between 50 and 58 atoms are shown in figure 6, calculated using
parameteristaion (B). Here there are internal sp r bonds unlike the carbon potential. The 60 atomIJ! structure is about 3.3 eV more energetically favourable than the corresponding fullerene cage
[28]. These structures are very similar to recent calculations using ab-initio potentials [29].
Carbon clusters
Table 4 gives a list of the optimum carbon structures calculated using the GA for the Brenner
carbon potential.

Figure 4: Small I  clusters calculated using parameterisation (A).
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Table 4 : Potential Energy of Lowest Minima (Brenner)
Number Potential Energy Energy / Geometry
of Atoms of Molecule (eV) Atom (eV)

3 -12.40 -4.1329 l
4 -18.58 -4.6439 l
5 -26.33 -5.2651 m
6 -33.96 -5.6600 m
7 -41.10 -5.8714 m
8 -47.91 -5.9883 m
9 -54.50 -6.0551 m

10 -60.95 -6.0950 m
11 -67.32 -6.1199 m
12 -73.61 -6.1342 m
13 -79.90 -6.1416 m
14 -86.11 -6.1507 m
15 -92.34 -6.1560 m
16 -98.61 -6.1631 m
17 -104.80 -6.1647 m
18 -112.29 -6.2386 c
19 -118.83 -6.2543 c
20 -128.39 -6.4195 f
21 -134.52 -6.4058 c
22 -142.09 -6.4586 c
23 -148.41 -6.4528 c
24 -157.16 -6.5483 f
25 -163.13 -6.5252 c
26 -171.98 -6.6146 f
27 -178.01 -6.5930 c
28 -186.88 -6.6743 f
29 -192.67 -6.6438 c
30 -200.44 -6.6813 f
31 -207.00 -6.6774 c
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Potential Energy
of

Lowest Minima
Number Potential Energy Energy / Geom-

of of Molecule Atom etry
Atoms (eV) (eV)

32 -216.66 -6.7706 f
33 -221.78 -6.7206 f
34 -230.30 -6.7735 f
35 -236.38 -6.7537 f
36 -245.45 -6.8181 f
37 -251.23 -6.7900 f
38 -259.97 -6.8413 f
39 -265.69 -6.8126 f
40 -274.64 -6.8660 f
41 -280.38 -6.8385 f
42 -289.34 -6.8890 f
43 -295.12 -6.8633 f
44 -304.09 -6.9111 f
45 -309.02 -6.8671 f
46 -318.54 -6.9248 f
47 -324.06 -6.8949 f
48 -333.38 -6.9454 f
49 -339.03 -6.9190 f
50 -348.37 -6.9674 f
51 -353.88 -6.9388 f
52 -362.83 -6.9742 f
53 -367.92 -6.9419 f
54 -377.69 -6.9943 f
55 -383.08 -6.9789 f
56 -392.37 -7.0066 f
57 -397.73 -6.9777 f
58 -407.25 -7.0216 f
59 -412.74 -6.9956 f
60 -422.55 -7.0425 f

l–linear, m–2D ring, c–cage, f–fullerene
Figure 7 shows also the geometries of some of the small cluster structures including fullerenes.

The transition from linear chains to rings occurs between 4 and 5 atoms and the transition from
rings to cages between 17 and 18 atoms. In all cases the Brenner potential gave fullerene or
fullerene-like cages as the minimum energy configurations for all molecules containing between
18 and 60 atoms. More details of these structures are given in [30].
Hydrocarbon clusters
The modified GA for two component systems is applied to determine low energy hydrocarbon
structures. The Brenner hydrocarbon potential has been fitted to a number of small alkane,
alkene, alkyne, radical and aromatic molecules and additionally has been shown to reproduce
the correct geometry and binding energies of larger hydrocarbon isomers. In this section we
test whether the potential identifies the ground state configurations of 
 ^ ¾Næ for specific values
of � and d . The optimised structures are compared with molecular data available from the pdb
databank at Okanagan University [31]. The GA identifies ground-state isomers with energies in
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Figure 5: Evolution stages of 18 IJ! atoms. After 500 generations the cluster dissociates into IJ! �
and IJ! ��� geometries. Two IJ! , clusters have a higher energy at -81.316 eV. The TDE method
gives a cluster with a higher energy of -78.25 eV.

every case that are less than or equal to those of the known isomers from the pdb database. The
results for a number of alkanes, alkenes, alkynes and aromatic molecules are shown in figures
8-11. Figure 8 shows the application of the algorithm to the Brenner hydrocarbon potential for
the alkane hydrocarbon isomers containing relatively small numbers of atoms, figure 9 gives the
alkenes, figure 10 the alkanes and figure 11 the aromatics. Data for clusters containing a larger
number of atoms is given in table 5. When ��	 is greater than 5, the GA determined global
geometries that seldom coincide with any contained in the pdb database. These GA determined
geometries however produced energies that were lower than those from the molecules reported
in the pdb data base. This shows that the Brenner potential cannot be used with confidence to
model such structures with �
	 × � . The data shows that the stereoisomers are equally energetic
with the molecules in the database see for example, 
 � ¾ � . For the aromatic isomers, the GA
finds the minimum energy geometries for benzene, toluene, dimethylbenzene and napthalene,
although for the case of 
 � ¾ ��� , a configuration with adjacent as opposed to opposite methyl
units has also the same energy. However 
 � ¾ 9 and 
 � ¾ � have different molecular structures,
with fused pentagonal rings and an eight-membered ring exhibiting preferential stability to
ethenylbenzene and ethynylbenzene.

19



Figure 6: Four examples of IJ! cage formations with an internally bonded four-fold co-ordinated
core calculated using parameterisation (B). Within the core it is possible to see atoms arranged
in the approximate forms of a square IJ! ��� pentagon IJ! � � or hexagon IJ! � � , IJ! � 9 . For the cages
containing between 48 and 60 atoms, two-thirds of the atoms are three-fold co-ordinated with
the majority of the rest having four-fold co-ordination. For 60 IJ! atoms the cage with the
internal core is 3.3 eV more stable than the fullerene. Four examples of I8! cage formations
with an internally bonded four-fold co-ordinated core calculated using parameterisation (B).
Within the core it is possible to see atoms arranged in the approximate forms of a square IJ! ���
pentagon I8! � � or hexagon IJ! � � , IJ! � 9 . For the cages containing between 48 and 60 atoms, two-
thirds of the atoms are three-fold co-ordinated with the majority of the rest having four-fold
co-ordination. For 60 IJ! atoms the cage with the internal core is 3.3 eV more stable than the
fullerene.
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Figure 7: Small carbon molecular structures containing between 10 and 60 atoms calculated
using the GA and the Brenner potential.

Table 5 compares the energy of database molecules with those evolved by the genetic al-
gorithm. All configurations are locally optimised with the LBFGS routine according to the
Brenner hydrocarbon interatomic potential energy function. The Database ID column provides
the filename for the pdb format data base molecule. Note that although the high level of signif-
icant figures in the energy table is physically meaningless, is necessary as two molecules with
completely different topologies may have energies that are similar to within as little as 0.005
eV.

The fact that the GA can determine lower energy structures than those observed experimen-
tally illustrates the difficulty of fitting real chemical systems with empirical potentials. Whereas
this might highlight the inadequacies of the Brenner potential it raises the intriguing possibil-
ity that new molecules could be discovered computationally by the application of the GA with
accurate interatomic potential energy functions for multi-component systems.
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Figure 8: Alkane hydrocarbon structures calculated using the GA and the Brenner hydrocarbon
potential.

Figure 9: Alkene hydrocarbon structures calculated using the GA and the Brenner hydrocarbon
potential.
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Figure 10: Alkyne hydrocarbon structures calculated using the GA and the Brenner hydrocar-
bon potential.

Figure 11: Aromatic hydrocarbon structures calculated using the GA and the Brenner hydro-
carbon potential.
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Table 5 : Lowest Energy Hydro-Carbon Chart
Hydro- No. of Database pdb Energy, eV

Series Carbon Entries in ID Database GA Identical
Molecule Database Minimum Minimum Geome tries
"!t¾ � � 3 nonane -115.620 -116.127 #
 ��� ¾ �#� 3 decane -127.891 -128.144 #

A 
 �#� ¾ ��� 3 34e-3m-6 -140.419 -140.923 #
L 
 �7� ¾ � 9 1 c-7ane -152.448 -152.935 #
K 
 � r ¾ � � 2 b-8ane -164.719 -165.462 #
A 
 �$� ¾ r � 2 224477m8 -177.736 -177.742 #
N 
 ��� ¾ r � 3 b-7ane -190.013 -190.254 #
E 
 � 9 ¾ r � 3 c-9ane -201.532 -202.446 #
 ��% ¾ r#9 1 d-10ane -214.048 -214.802 #
 ��� ¾ r � 1 c-10ane -226.073 -227.164 #
A 
"!t¾ ��� 6 f-cy5ane -110.689 -110.689 ¯
L 
 ��� ¾ � � 5 bucyclo6 -122.968 -123.219 #
K 
 �#� ¾ �#� 3 g-cy6ane -135.241 -135.482 #
E 
 �7� ¾ ��� 1 al0557 -147.406 -147.760 #
N 
 � r ¾ � 9 3 b-6ane -159.530 -159.935 #
E 
 ��� ¾ �&� 1 al3063 -294.422 -294.633 #
"!t¾ � 9 14 spiro-44 -105.504 -105.544 #
A 
 ��� ¾ ��� 6 s45ane -117.779 -117.780 #
L 
 �#� ¾ � � 5 s55ane -130.055 -130.297 #
K 
 �7� ¾ �#� 4 a-s45ane -142.328 -142.761 #
Y 
 � r ¾ ��� 3 b-s45ane -154.598 -154.840 #
N 
 �$� ¾ � 9 1 al0066 -167.130 -167.152 #
E 
 � 9 ¾ r � 1 a-s56ane -191.417 -192.094 #
 ��% ¾ r � 2 al0524 -202.017 -203.821 #
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5 Conclusions
Different algorithms have been compared for the important problem of determining the most
stable configuration of a system of particles in space which interact through classical force-
fields which are both attractive at large separation and repulsive when the particles lie close
together. Modern global optimisation algorithms have been shown to obtain some of the correct
configurations when the number of particles is small but the GA outperforms these for larger
systems.

The algorithm would also in principle be suitable for application with ab initio methods
although the determination of the total system energy would be more time-consuming. The
algorithm can also be easily parallelised since the time consuming part of the calculation is that
involved with the local optimisation of each cluster in the population.

The algorithm is also robust in that it can determine the minimum energy configuration
of a system of particles without any pre-knowledge of what the structure should be. All that
is required is a reasonably sized box in which the particles are distributed. In contrast, many
chemists use intuition followed by local optimisation. This can often fail as demonstrated in [13]
where the genetic algorithm found more optimal minima than had previously been determined
by enlightened guesswork.

The advantage of the GA compared to a black box global optimisation approach is that it is
physically based and uses the idea that an already existing cluster of atoms can be rearranged
with knowledge of the configurations of other clusters. This evolution strategy, together with
the relatively small number of candidate clusters required, gives it a considerable advantage
over the MSL and TDE methods.

The GA also found lower energy structures for the hydrocarbons modelled with the Brenner
potential than those experimentally observed. The experimentally observed structures always
turn out to be local minima in the Brenner description but not always global ones. With em-
pirical potentials it is always difficult to describe structures adequately for which the potential
has not been fitted. This illustrates that even the Brenner potential, which is one of the most
sophisticated available for modelling carbon and hydrocarbons, cannot describe all cases with
accuracy and that ab initio methods should be used wherever possible.

Molecular design and candidate geometries for new drugs are increasingly being investi-
gated using computers. The combination of the GA approach with molecular design techniques
might therefore yield substantial benefits in this developing field.
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