60 research outputs found

    Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus

    Get PDF
    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration

    Deep Brain Stimulation of Nucleus Accumbens Region in Alcoholism Affects Reward Processing

    Get PDF
    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H2[15O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control

    A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.)

    Get PDF
    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds

    Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation

    Get PDF
    Transduction of graded synaptic input into trains of all-or-none action potentials (spikes) is a crucial step in neural coding. Hodgkin identified three classes of neurons with qualitatively different analog-to-digital transduction properties. Despite widespread use of this classification scheme, a generalizable explanation of its biophysical basis has not been described. We recorded from spinal sensory neurons representing each class and reproduced their transduction properties in a minimal model. With phase plane and bifurcation analysis, each class of excitability was shown to derive from distinct spike initiating dynamics. Excitability could be converted between all three classes by varying single parameters; moreover, several parameters, when varied one at a time, had functionally equivalent effects on excitability. From this, we conclude that the spike-initiating dynamics associated with each of Hodgkin's classes represent different outcomes in a nonlinear competition between oppositely directed, kinetically mismatched currents. Class 1 excitability occurs through a saddle node on invariant circle bifurcation when net current at perithreshold potentials is inward (depolarizing) at steady state. Class 2 excitability occurs through a Hopf bifurcation when, despite net current being outward (hyperpolarizing) at steady state, spike initiation occurs because inward current activates faster than outward current. Class 3 excitability occurs through a quasi-separatrix crossing when fast-activating inward current overpowers slow-activating outward current during a stimulus transient, although slow-activating outward current dominates during constant stimulation. Experiments confirmed that different classes of spinal lamina I neurons express the subthreshold currents predicted by our simulations and, further, that those currents are necessary for the excitability in each cell class. Thus, our results demonstrate that all three classes of excitability arise from a continuum in the direction and magnitude of subthreshold currents. Through detailed analysis of the spike-initiating process, we have explained a fundamental link between biophysical properties and qualitative differences in how neurons encode sensory input

    Painted Goby Larvae under high-CO2 fail to recognize reef sounds

    Get PDF
    Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.Fundação para a Ciência e a Tecnologia (FCT)info:eu-repo/semantics/publishedVersio

    Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae)

    Full text link

    Habitat quality affects sound production and likely distance of detection on coral reefs

    Get PDF
    The interwoven nature of habitats and their acoustic fingerprints (soundscapes) is being increasingly recognized as a key component of animal ecology. Natural soundscapes are crucial for orientation in many different taxa when seeking suitable breeding grounds or settlement habitats. In the marine environment, coral reef noise is an important navigation cue for settling reef fish larvae and is thus a possible driver of reef population dynamics. We explored reef noise across a gradient of reef qualities, tested sound propagation models against field recordings and combined them with fish audiograms to demonstrate the importance of reef quality in determining which reefs larvae are likely to detect. We found that higher-quality reefs were significantly louder and richer in acoustic events (transient content) than degraded reefs, and observed that sound propagated farther with less attenuation than predicted by classic models. We discuss how zones of detection of poor-quality reefs could be reduced by over an order of magnitude compared to healthy reefs. The present study provides new perspectives on the far reaching effects habitat degradation may have on organisms that utilize soundscapes for orientation towards or away from coral reefs, and highlights the value of sound recordings as a cost-effective reef survey and monitoring tool

    Acupuncture and counselling for depression in primary care : a randomised controlled trial

    Get PDF
    Background: Depression is a significant cause of morbidity. Many patients have communicated an interest in nonpharmacological therapies to their general practitioners. Systematic reviews of acupuncture and counselling for depression in primary care have identified limited evidence. The aim of this study was to evaluate acupuncture versus usual care and counselling versus usual care for patients who continue to experience depression in primary care. Methods and Findings: In a randomised controlled trial, 755 patients with depression (Beck Depression Inventory BDI-II score $20) were recruited from 27 primary care practices in the North of England. Patients were randomised to one of three arms using a ratio of 2:2:1 to acupuncture (302), counselling (302), and usual care alone (151). The primary outcome was the difference in mean Patient Health Questionnaire (PHQ-9) scores at 3 months with secondary analyses over 12 months follow-up. Analysis was by intention-to-treat. PHQ-9 data were available for 614 patients at 3 months and 572 patients at 12 months. Patients attended a mean of ten sessions for acupuncture and nine sessions for counselling. Compared to usual care, there was a statistically significant reduction in mean PHQ-9 depression scores at 3 months for acupuncture (22.46, 95% CI 23.72 to 21.21) and counselling (21.73, 95% CI 23.00 to 20.45), and over 12 months for acupuncture (21.55, 95% CI 22.41 to 20.70) and counselling (21.50, 95% CI 22.43 to 20.58). Differences between acupuncture and counselling were not significant. In terms of limitations, the trial was not designed to separate out specific from non-specific effects. No serious treatment-related adverse events were reported. Conclusions: In this randomised controlled trial of acupuncture and counselling for patients presenting with depression, after having consulted their general practitioner in primary care, both interventions were associated with significantly reduced depression at 3 months when compared to usual care alone
    corecore