31 research outputs found

    Imprinted <i>Grb10,</i> encoding growth factor receptor bound protein 10, regulates fetal growth independently of the insulin-like growth factor type 1 receptor (<i>Igf1r</i>) and insulin receptor (<i>Insr</i>) genes

    Get PDF
    BackgroundOptimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role.ResultsShould Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types.ConclusionsGrb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth

    Distinct physiological and behavioural functions for parental alleles of imprinted Grb10

    Get PDF
    Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development1, but also postnatal functions including energy homeostasis2 and behaviour3, 4. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success)5, 6, imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules7. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues

    Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes.

    Get PDF
    Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≀ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.JW is supported by a Cancer Research UK Cambridge Cancer Centre Clinical Research Training Fellowship. Funding for the NIHR BioResource – Rare diseases project was provided by the National Institute for Health Research (NIHR, grant number RG65966). ERM acknowledges support from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre), Cancer Research UK Cambridge Cancer Centre and Medical Research Council Infrastructure Award. The University of Cambridge has received salary support in respect of EM from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. DGE is an NIHR Senior Investigator and is supported by the all Manchester NIHR Biomedical Research Centre

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    An investigation of mouse Grb10, an imprinted gene that links fetal growth and insulin-regulated metabolism

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism

    No full text
    To investigate the function of the Grb10 adapter protein, we have generated mice in which the Grb10 gene was disrupted by a gene-trap insertion. Our experiments confirm that Grb10 is subject to genomic imprinting with the majority of Grb10 expression arising from the maternally inherited allele. Consistent with this, disruption of the maternal allele results in overgrowth of both the embryo and placenta such that mutant mice are at birth ≈30% larger than normal. This observation establishes that Grb10 is a potent growth inhibitor. In humans, GRB10 is located at chromosome 7p11.2–p12 and has been associated with Silver–Russell syndrome, in which ≈10% of those affected inherit both copies of chromosome 7 from their mother. Our results indicate that changes in GRB10 dosage could, in at least some cases, account for the severe growth retardation that is characteristic of Silver–Russell syndrome. Because Grb10 is a signaling protein capable of interacting with tyrosine kinase receptors, we tested genetically whether Grb10 might act downstream of insulin-like growth factor 2, a paternally expressed growth-promoting gene. The result indicates that Grb10 action is essentially independent of insulin-like growth factor 2, providing evidence that imprinting acts on at least two major fetal growth axes in a manner consistent with parent–offspring conflict theory

    Maternally-inherited Grb10 reduces placental size and efficiency

    Get PDF
    AbstractThe control of foetal growth is poorly understood and yet it is critically important that at birth the body has attained appropriate size and proportions. Growth and survival of the mammalian foetus is dependent upon a functional placenta throughout most of gestation. A few genes are known that influence both foetal and placental growth and might therefore coordinate growth of the conceptus, including the imprinted Igf2 and Grb10 genes. Grb10 encodes a signalling adapter protein, is expressed predominantly from the maternally-inherited allele and acts to restrict foetal and placental growth. Here, we show that following disruption of the maternal allele in mice, the labyrinthine volume was increased in a manner consistent with a cell-autonomous function of Grb10 and the enlarged placenta was more efficient in supporting foetal growth. Thus, Grb10 is the first example of a gene that acts to limit placental size and efficiency. In addition, we found that females inheriting a mutant Grb10 allele from their mother had larger litters and smaller offspring than those inheriting a mutant allele from their father. This grandparental effect suggests Grb10 can influence reproductive strategy through the allocation of maternal resources such that offspring number is offset against size

    Mice with a Disruption of the Imprinted Grb10 Gene Exhibit Altered Body Composition, Glucose Homeostasis, and Insulin Signaling during Postnatal Life▿

    No full text
    The Grb10 adapter protein is capable of interacting with a variety of receptor tyrosine kinases, including, notably, the insulin receptor. Biochemical and cell culture experiments have indicated that Grb10 might act as an inhibitor of insulin signaling. We have used mice with a disruption of the Grb10 gene (Grb10Δ2-4 mice) to assess whether Grb10 might influence insulin signaling and glucose homeostasis in vivo. Adult Grb10Δ2-4 mice were found to have improved whole-body glucose tolerance and insulin sensitivity, as well as increased muscle mass and reduced adiposity. Tissue-specific changes in insulin receptor tyrosine phosphorylation were consistent with a model in which Grb10, like the closely related Grb14 adapter protein, prevents specific protein tyrosine phosphatases from accessing phosphorylated tyrosines within the kinase activation loop. Furthermore, insulin-induced IRS-1 tyrosine phosphorylation was enhanced in Grb10Δ2-4 mutant animals, supporting a role for Grb10 in attenuation of signal transmission from the insulin receptor to IRS-1. We have previously shown that Grb10 strongly influences growth of the fetus and placenta. Thus, Grb10 forms a link between fetal growth and glucose-regulated metabolism in postnatal life and is a candidate for involvement in the process of fetal programming of adult metabolic health
    corecore