9,024 research outputs found

    Self-referential Monte Carlo method for calculating the free energy of crystalline solids

    Get PDF
    A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference between a state whose free energy can be calculated relatively easily and the state of interest. Previously published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference state. The self-referential method employs a radically different reference state; it is the crystalline solid of interest but with a different number of unit cells. So it calculates the free-energy difference between two crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also be very efficient

    Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

    Full text link
    In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys. Rev.

    Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer

    Get PDF
    To ensure food supply, phosphorus must be recycled, for which an appealing method is using struvite fertilizer from human excreta. One struvite from black water and another from urine were assessed for safety under Dutch regulations, and for effectiveness as P fertilizer in a maize field experiment and a literature review. Both struvites contained 12% P, 12% Mg, 6% N, and 0.5-1.5% of several micronutrients. Struvites did not exceed Dutch regulations for heavy metals or pathogens, and based on literature, organic toxins should be far below regulatory limits. In this study and 18 others, struvite appears to have similar effectiveness to soluble fertilizer. Early in the season, 200 kg P2O5 ha-1 of black water struvite and soluble phosphorus improved maize performance (

    Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice

    Full text link
    We consider a model for a two dimensional electron gas moving on a kagom\'{e} lattice and locally coupled to a chiral magnetic texture. We show that the transverse conductivity σ_xy\sigma\_{xy} does not vanish even if spin-orbit coupling is not present and it may exhibit unusual behavior. Model parameters are the chirality, the number of conduction electrons and the amplitude of the local coupling. Upon varying these parameters, a topological transition characterized by change of the band Chern numbers occur. As a consequence, σ_xy\sigma\_{xy} can be quantized, proportional to the chirality or have a non monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure

    Static and dynamic properties of the interface between a polymer brush and a melt of identical chains

    Full text link
    Molecular dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model with Lennard-Jones interactions between the beads and a FENE potential between nearest neighbors along the backbone of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and non-equilibrium Molecular Dynamics simulations at constant temperature and volume using the Dissipative Particle Dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The viscosity and slippage at the interface are calculated as functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy

    Topological Hall effect and Berry phase in magnetic nanostructures

    Full text link
    We discuss the anomalous Hall effect in a two-dimensional electron gas subject to a spatially varying magnetization. This topological Hall effect (THE) does not require any spin-orbit coupling, and arises solely from Berry phase acquired by an electron moving in a smoothly varying magnetization. We propose an experiment with a structure containing 2D electrons or holes of diluted magnetic semiconductor subject to the stray field of a lattice of magnetic nanocylinders. The striking behavior predicted for such a system (of which all relevant parameters are well known) allows to observe unambiguously the THE and to distinguish it from other mechanisms.Comment: 5 pages with 4 figure

    Direct calorimetric measurements of isothermal entropy change on single crystal W-type hexaferrites at the spin reorientation transition

    Full text link
    We report on the magnetic field induced isothermal entropy change, \Delta s(Ha, T), of W-type ferrite with CoZn substitution. Entropy measurements are performed by direct calorimetry. Single crystals of the composition BaCo0.62_0.62Zn1.38_1.38Fe16_16O27_27, prepared by the flux method, are measured at different fixed temperatures under an applied field perpendicular and parallel to the c axis. At 296 K one deduces a value of K1_1 = 8.7 \times 10^{4} J m−3^-3 for the first anisotropy constant, which is in good agreement with the literature. The spin reorientation transition temperature is estimated to take place between 200 and 220 K

    Seasonal and recurrent intensive care unit admissions for acute severe asthma in children

    Get PDF
    Life-threatening attacks of asthma requiring intensive care unit (ICU) management at Red Cross War Memorial Children's Hospital in Cape Town were noted to occur in some patients in the same or adjacent months of different years. A retrospective case-controlled study was performed of 21 such 'seasonal' patients who presented to the ICU over a 14-year period. The group tnade up 6,5% of all asthma patients adtnitted to the ICU and their 65 admissions made up 15,6% of all ICU asthma admissions during this period. The control group consisted of patients with recurrent admissions that occurred in 'random' months. The two groups were compared in respect of demographic and clinical data. Patients requiring seasonal adtnissions were shown to form a distinct sub-population of children with severe asthma, some with a family history of fatal asthma, who were less likely to 'outgrow' asthma in childhood, were Inore likely to require Inaintenance steroid therapy for asthtna management, and significantly more often had positive radioallergosorbent tests to Aspergillus and Cladosporium sp. and to grass pollen. A retrospective analysis of dates of severe asthtna attacks Inay identify individual seasonality, which is a risk factor for life-threatening and intractable asthma

    Low Cost & Fast Turnaround:Reconfigurable Graph-Based Execution Units

    Get PDF

    Quantized Anomalous Hall Effect in Two-Dimensional Ferromagnets - Quantum Hall Effect from Metal -

    Full text link
    We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromagnets. The topological nature of AHE leads to the integer quantum Hall effect from a metal, i.e., the quantization of σxy\sigma_{xy} induced by the localization except for the few extended states carrying Chern number. Extensive numerical study on a model reveals that Pruisken's two-parameter scaling theory holds even when the system has no gap with the overlapping multibands and without the uniform magnetic field. Therefore the condition for the quantized AHE is given only by the Hall conductivity σxy\sigma_{xy} without the quantum correction, i.e., ∣σxy∣>e2/(2h)|\sigma_{xy}| > e^2/(2h).Comment: 5 pages, 4 figures, REVTe
    • …
    corecore