In this work we compare and characterize the behavior of Langevin and
Dissipative Particle Dynamics (DPD) thermostats in a broad range of
non-equilibrium simulations of polymeric systems. Polymer brushes in relative
sliding motion, polymeric liquids in Poiseuille and Couette flows, and
brush-melt interfaces are used as model systems to analyze the efficiency and
limitations of different Langevin and DPD thermostat implementations. Widely
used coarse-grained bead-spring models under good and poor solvent conditions
are employed to assess the effects of the thermostats. We considered
equilibrium, transient, and steady state examples for testing the ability of
the thermostats to maintain constant temperature and to reproduce the
underlying physical phenomena in non-equilibrium situations. The common
practice of switching-off the Langevin thermostat in the flow direction is also
critically revisited. The efficiency of different weight functions for the DPD
thermostat is quantitatively analyzed as a function of the solvent quality and
the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys.
Rev.