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Self-referential Monte Carlo method for calculating the free energy of crystalline solids

M. B. Sweatman*
Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XJ, United Kingdom

A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All
Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference
between a state whose free energy can be calculated relatively easily and the state of interest. Previously
published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference
state. The self-referential method employs a radically different reference state; it is the crystalline solid of
interest but with a different number of unit cells. So it calculates the free-energy difference between two
crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to
some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can
potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also
be very efficient.

I. INTRODUCTION

There are many Monte Carlo methods �1–11� in the lit-
erature for calculating the absolute free energy of classical
crystalline solids but none of them are entirely satisfactory.
Here, I describe a different approach for such systems, a
“self-referential” �SR� Monte Carlo technique for calculating
the free energy of classical crystalline solids, both in the bulk
and in confined spaces. The aim of this work is to demon-
strate the feasibility of this approach by application to some
simple crystalline systems, namely, the face centered cubic
crystals of hard sphere and Lennard-Jones particles. Al-
though this general approach has been considered before by
Barnes and Kofke �12� in the context of a “hard rod on a
line” system, and there are also some strong parallels with
the work of Mon and colleagues �13,14� who studied lattice
systems, the method provided here is quite different and it
can potentially be applied to arbitrary crystals whether in
bulk or confined environments. The current implementation
of this technique is rather inefficient, but in the summary I
outline some ideas that should allow this method to be very
efficient.

Phase transitions involving crystalline solids are often
strongly first order and associated with significant hysteresis.
So knowledge of the free energy of crystalline solids is im-
portant, particularly in computer simulations where, because
of relatively small system sizes, nucleation events can be
rare. At this stage it is also important to note a significant
technical difference between simulation studies of crystals in
bulk and confined environments. For a bulk system the ex-
perimental pressure and temperature can be imposed by
simulating in the isothermal-isobaric �NPT� ensemble. This
means that only free-energy differences between competing
phases need be determined as a function of pressure to de-
cide the location of an equilibrium transition. However,
when simulating a confined system we are usually limited to

small systems that do not include the confined system–bulk
system interface. So, in general, we cannot impose or mea-
sure the bulk �i.e., experimental� pressure corresponding to
the confined state. Instead, it is essential that the absolute
chemical potential is known, because this quantity is the
same in the confined and bulk systems at equilibrium. Un-
fortunately, we cannot impose the chemical potential on
simulated crystals �i.e., we cannot simulate crystals in the
grand-canonical ensemble� because of difficulties associated
with periodic boundary conditions and particle number fluc-
tuations �this is explained in detail later�. Rather, simulations
should be performed with a fixed number of particles and the
absolute chemical potential should be measured. For a pure
system the chemical potential is simply the Gibbs free en-
ergy per particle of the confined isothermal-isobaric en-
semble. So for simulation studies of confined crystals calcu-
lation of the absolute Gibbs free energy is essential if
conditions inside the pore are to be related to experimental
�or bulk� conditions, regardless of whether phase behavior is
of interest or not.

Given the undoubted importance of calculating the free
energy in Monte Carlo simulations it is no surprise that a
spectrum of various approaches already exists for this pur-
pose. Every method calculates the free-energy difference be-
tween the state of interest and another state whose absolute
free energy can be calculated relatively easily. So they can all
be classified according to �1� the reference state for which
the absolute free energy is calculated, and �2� the approach
used to calculate the free-energy difference. Several options
are available for each. Consider the choice of reference states
first. Many methods employ a simple model crystal, such as
the Einstein �3� or acoustic �15� crystals, as a reference state.
All the others �4–6� use a �meta�stable fluid state. These
choices are not entirely satisfactory because these reference
states are very different from the crystalline solid state of
interest. This is particularly important for molecular and con-
fined systems where the complexity of the path, or the “path
length,” between the reference state and the state of interest
can be long and sometimes difficult to define. The key and
radical contribution of the work described here is that the



reference state is exactly the same state as the final state
�hence the term self-referential, coined by Barnes and Kofke
�12��, except that the reference state has a different number
of particles �or crystal unit cells to be precise�. This choice
has several distinct advantages that will potentially allow
short paths between these two states to be easily defined.
They are as follows: �1� a direct path between initial and
final states is traversed avoiding first-order phase transitions
�longer paths designed to avoid these transitions are unnec-
essary�, �2� the path needs to traverse only relevant degrees
of freedom and need not traverse other degrees of freedom or
parameters, i.e., the molecular model �both molecule-
molecule and molecule-wall interactions� is constant along
the path, and �3� together with the retiling algorithm �see
later� only the absolute minimum number of particles need
travel this path, i.e., only one crystal unit cell for a bulk
system �in all other methods all particles in the ensemble
travel the path�. These aspects are discussed in more detail in
the comparison section below and in the Summary.

Many alternatives exist for calculating free-energy differ-
ences �2,8,9�, including thermodynamic integration �TI�,
free-energy perturbation, and “parameter hopping” �or mul-
ticanonical simulation� as seen in the umbrella-sampling �2�,
Landau free energy �5�, and phase-switch �4� approaches. It
is possible to couple numerical integration �quadrature� with
each of these techniques to produce an efficient method for
traversing the required free-energy difference. In the imple-
mentation described below, parameter hopping is used with-
out quadrature to traverse the path, i.e., the entire free-energy
difference is traversed without any interpolation by a succes-
sion of connected hops, and consequently the SR approach
described here is not particularly efficient. Some ideas that
could dramatically improve its efficiency are discussed in the
Summary.

The remainder of this paper is organized as follows. In the
next two sections I discuss some issues relating to the moti-
vation for this work. Then I describe the SR method as it is
applied to the simple systems considered here. I avoid at-
tempting a more general definition of the methodology that
could be applied to arbitrary crystals, which would be rather
complicated, in favor of clarity, which is more important
considering that the aim of this work is to validate a new
idea. This developed methodology is applied to calculate the
chemical potential of pure fcc hard-sphere and Lennard-
Jones bulk crystals. Results are presented at conditions of
solid-fluid coexistence and compared with existing reference
data. Finally, I discuss potential future work including ideas
to improve efficiency.

A. The choice of ensemble

In a conventional simulation of a crystalline solid with
periodic boundary conditions the number of lattice sites is
fixed. Further, in a grand-canonical-ensemble simulation the
volume is fixed, and it follows that for a space-filling crystal
the lattice site density must also be fixed. If the lattice site
density is fixed then, clearly, there is no way that the simu-
lated crystal can attain the correct equilibrium lattice site
density unless, somehow, it is initiated in this state. This is

the principal reason why space-filling crystals cannot be
simulated in the grand-canonical ensemble. Of course, an-
other problem has to do with the probability of acceptance of
insertion and deletion moves, but this is only a practical
problem that might be tackled with sufficient computing re-
sources or clever algorithms. The problem concerning the
lattice site density is more fundamental. Note that this is not
a finite-size effect, i.e., it is not necessarily resolved by simu-
lating a sufficiently large system because no matter how
large the system one cannot guarantee that it will be initiated
with the correct lattice site density. For two-dimensional
�2D� crystals, for example, those that form as an adsorbed
layer on a surface, the lattice site density is fixed if the simu-
lation box area parallel to the layer is fixed. So equilibrium
2D crystals can only be simulated if the simulation box
lengths parallel to the surface are allowed to fluctuate. This
holds even if the 2D layer is in contact with a fluid phase.

Of course, simulations of pure �defect-free� crystalline
solids can be carried out in the NPT ensemble for bulk crys-
tals and the isothermal-isotension ensemble �N�T� for con-
fined systems. For a system confined in an ideal slit pore, for
example, interfacial tension is fixed in a direction parallel to
the slit. Now the lattice site density is free to fluctuate and
attain the true equilibrium state. This approach is fine for
bulk crystals where the simulated pressure corresponds to
experimental pressure. But crystals confined within pores of
fixed width �slit pores, for example� do not experience the
bulk pressure directly, unless the confined system–bulk sys-
tem interface is simulated. Instead, to establish the experi-
mental or bulk conditions corresponding to a confined state
one must know the chemical potential, because the chemical
potential is constant throughout an equilibrium system re-
gardless of inhomogeneity. So we would like to simulate
confined crystals in the grand-canonical ensemble where the
chemical potential is imposed, yet we cannot. Rather, we
should simulate them in an N�T ensemble and measure the
absolute chemical potential �and hence the Gibbs free en-
ergy� to establish experimental �or bulk� conditions. Despite
this, there are several examples �16–19� in the literature
where the grand-canonical ensemble has been used to simu-
late space-filling crystalline solids and 2D crystals with fixed
box area. All this work should be considered carefully, be-
cause in every case these are not equilibrium simulations.
Note also the simulations by Dominguez and colleagues �20�
in which crystalline solid free energies for a slit-pore system
are calculated in an ensemble in which the slit-pore area is
fixed. We can expect that their free-energy calculations and
hence their predicted phase transition points are dependent
on their choice of slit-pore area, a fact admitted by them
when referring to the strain on their simulated crystals.

The key point of this discussion is to emphasize the im-
portance of methods for calculating the chemical potential
�or equivalently the Gibbs free energy� of confined crystals.
This is an important factor in the motivation for this current
work.

B. Comparison with other approaches

The above comments concerning the advantages of the
self-referential approach deserve more detailed justification.



Given the plethora of alternative methods this justification
could become exorbitantly long, so this section will concen-
trate on comparing the self-referential approach with some of
the more popular and robust methods in the literature, in
particular the lattice-coupling-expansion TI method �2�, the
Landau free-energy approach �5�, and the phase-switch
method �4� �these last two methods were not originally de-
signed to calculate absolute free energies, but provided the
absolute free energy of the reference fluid phase can also be
calculated they can clearly be used for this purpose�. To com-
pare these approaches let us consider a cubic phase of ice
confined within a slit pore at fixed conditions of pore width,
temperature, and interfacial tension �or equivalently fixed
grand potential per unit area of slit�. As we are using this
system as a hypothetical application there is no need to
worry about whether this phase does actually exist.

Let us consider the lattice-coupling-expansion TI method
first. With this method the �canonical� Helmholtz free energy
is calculated at fixed slit-pore area. The first step in the TI
scheme is to introduce a center-of-mass constraint so that
subsequent paths can be traversed. The details of this step are
not trivial �2� and, indeed, recent work �21� has corrected
previous errors associated with this step. Next, we traverse a
path that gradually couples the water molecules to their lat-
tice sites with strong harmonic springs. Note that orienta-
tional �22� as well as translational coupling of the water mol-
ecules might be useful for this material in order to avoid
traversing first-order phase transitions along subsequent
paths. If orientational coupling is used then it might be ad-
vantageous to gradually turn off any electrostatic dipoles on
the water molecular model—this could help with the subse-
quent expansion stage. Next, the area of the slit pore can be
gradually increased until interactions between water mol-
ecules are insignificant. Note that the area of the final ex-
panded state will depend on whether the electrostatic dipole
interactions have previously been turned off �because perma-
nent dipole–permanent dipole interactions decay more
slowly �r−3� than induced dipole–induced dipole �or disper-
sion� interactions �r−5��. Next, any orientational coupling
will need to be gradually turned off. Finally, the water
molecule–pore wall interactions will need to be gradually
turned off to arrive at the noninteracting Einstein crystal.
Note that a further step involving calculating the free energy
of the ideal gas �with orientational degrees of freedom�
might be needed. Finally, this entire calculation should be
repeated for a range of system sizes to ascertain the signifi-
cance of finite-size effects induced by simulating in an en-
semble with fixed slit-pore area.

Next, consider the Landau free-energy approach applied
in an N�T ensemble consisting of fixed interfacial tension,
number of water molecules, and temperature, where a path
from the cubic crystalline phase to fluid water is to be tra-
versed. The free energy of this ensemble is simply the water
chemical potential multiplied by the number of water mol-
ecules. First, an order parameter that can effectively distin-
guish different solid and fluid phases must be formulated.
Once this is achieved the simulation proceeds by comparing
the statistical likelihood of macrostates constrained to narrow
ranges of this order parameter—stepping continuously
through the order parameter from the crystal to the fluid �or

vice versa� generates the required free-energy difference,
avoiding any first-order phase transitions. To be successful
the resulting fluid phase must be �meta�stable. If no stable
liquidlike phase exists at the required conditions then a path
in thermodynamic space �temperature and interfacial tension
in this case� might be traversed to ensure the existence of
such a fluid state. So some understanding of the phase be-
havior of the fluid state is required in advance. Finally, the
free energy of the fluid water is obtained by standard meth-
ods. The efficiency of this approach depends on the free-
energy barrier between initial and final states. The height of
this barrier is not known a priori—it will depend on the
order parameter, but it will essentially be proportional to the
number of particles in the simulation.

Now let us consider the phase-switch method applied,
again, in an N�T ensemble. This is essentially a parameter-
hopping approach that measures the free-energy difference
between two states by sampling both states in the same simu-
lation. Specialized Monte Carlo �MC� moves allow the sys-
tem to switch from one state to the other �by performing a
global coordinate transformation� provided the system is suf-
ficiently close to special microstates where this switch has a
reasonable probability of being accepted. The system is bi-
ased to ensure that it approaches these special microstates
with sufficient regularity. This is not actually so different
from the Landau method above; in this case the bias directs
the fluid subsystem toward special “frozen” or fixed fluid
configurations that can then be rearranged �via the global
coordinate transformation� to generate the crystal. So the
same remarks pertain to this approach as to the Landau ap-
proach above, except that a different order parameter is
needed.

Finally, consider the SR approach. Once again simulations
are performed in the N�T ensemble. Two steps are per-
formed �and are explained in more detail later�. The first is a
single parameter-hopping step that doubles the number of
unit cells in the simulation—this is achieved by replication
whereby a double-size system is created consisting of two
nearly identical �to within a tolerance� single-size systems.
The second step allows the coordinates of the newly created
water molecules to relax fully from their initial highly con-
strained values.

Some of the advantages of the SR approach become clear
in this example. Although the lattice-coupling-expansion TI
approach is probably feasible, the path is arduous involving
many different segments, including the center-of-mass ad-
justment, translational coupling, possible orientational cou-
pling, electrostatic dipole elimination, expansion, and finally
elimination of the pore walls. Great effort is made to define a
path that avoids first-order phase transitions. If no such path
can be found then additional parameter hops can be intro-
duced to traverse any phase transitions. For very complex
materials defining such a path could well be difficult and
frustrating. In contrast, the phase-switch, Landau free-
energy, and SR approaches offer a more concise path. How-
ever, the phase-switch and Landau free-energy approaches
rely on the existence of a �meta�stable liquidlike phase
whose free energy still needs to be calculated, and an order
parameter must be defined in advance. So the advantages of
the SR approach will become more important as the material



becomes more complex, for example, crystals of proteins
and pharmaceuticals confined in structured pores. Enhance-
ment of the SR approach in line with ideas outlined in the
Summary could potentially lead to it also being a very effi-
cient approach.

II. THEORY

Our aim is to calculate the Gibbs-free-energy difference
between two crystalline solid systems with differing numbers
of unit cells �but are otherwise identical�. If one system has
m unit cells and the other has n�m, then the free energy of
this structure is x�G / �n−m� where x is the number of unit
cells and �G is the Gibbs-free-energy difference between
these two systems. For a pure crystal the chemical potential
is then �G /Nc�n−m� where Nc is the number of particles per
unit cell. So, to be clear, the SR approach is simultaneously
both a free-energy difference and an absolute method. It cal-
culates the Gibbs-free-energy difference between two sys-
tems that differ only in their size, yet because the Gibbs free
energy scales linearly with size the absolute Gibbs free en-
ergy �and chemical potential for a pure system� is obtained
automatically. This idea was first expounded by Barnes and
Kofke in a slightly restricted sense, i.e., they formulated and
applied this SR idea in the canonical ensemble where it is
exact only in the thermodynamic limit �although their model
system of hard rods was found to be sufficiently large that
finite-size effects were unimportant�. Note also the parallels
with the work of Mon. In this work the free-energy differ-
ence between lattice systems �once again in the canonical
ensemble� that differ only in their size is calculated, but lin-
earity of the free energy with system size is explicitly not
assumed. So this is not a SR approach in the fullest sense
defined here.

For a mixture we must also know the difference in chemi-
cal potential between each species to obtain the absolute
chemical potentials. But this is not the focus of this work,
and is a problem with all methods that calculate Gibbs free
energies. For alloys, it might be resolved using a semi-grand-
ensemble simulation �2�.

The systems analyzed here are pure bulk crystalline solids
with cubic unit cells where each particle only has transla-
tional degrees of freedom �denoted by r� and the discussion
below reflects this. Modifications that arise when considering
more complex systems, such as confined or molecular crys-
tals, will be discussed briefly in the Summary. In this imple-
mentation of the SR approach we choose for convenience
n=2m and �G is split into two contributions. The first mea-
sures the free-energy difference between the small �single-
sized� system at pressure Ps and temperature Ts, and the
large �double-sized� system at Pd1 and Td1, where one-half of
the double-size system is a replica, to within a tolerance, of
the other half. The second contribution measures the free-
energy difference between this constrained double-size sys-
tem and the unconstrained double-size system at Ps and Ts.
MC schemes to measure each of these contributions are de-
scribed below separately. Alternative schemes with different
choices for n are possible and discussed in the Summary.

Each scheme is based on parameter hopping, i.e. two
neighboring states, labeled a and b, are simulated simulta-

neously in a multicanonical ensemble. The free-energy dif-
ference between these two states, �Gab, is simply

�Gab = − kBT ln�pb/pa� �1�

where pa=1− pb is the unbiased probability that the simula-
tion is in macrostate a. This free-energy difference is also the
bias needed in a non-Boltzmann sampling regime to ensure
pa= pb.

The Gibbs free energy is related to the corresponding par-
tition function � via the fundamental relation

G = − kBT ln��� . �2�

Following the arguments put forward by Wilding �23� the
isothermal-isobaric partition function for a classical crystal-
line solid is presented as

��N,P,T� = �
0

�

dV e−�PV�−N

N
�

V�
drNe−�H�rN� �3�

where H is the configurational contribution to the Hamil-
tonian, �=1/kBT is the inverse temperature, V is the volume,
and � is obtained by integrating momentum degrees of free-
dom. The factor N−1 deserves some explanation. Normally
this factor, which accounts for double-counting states that
have identical quantum wave functions, would be N!. But in
Eq. �3� the particles are not allowed to permute their lattice
positions �signaled by the constraint V��. So the number of
identical states, allowing for periodic boundary conditions, in
now only N. Of course, this is not a true partition function
because it is not dimensionless. Work by Koper and Reiss
suggests that the proper partition function for the NPT en-
semble is

��N,P,T� =�
0

�

dV �P*�V�e−�PV�−N

N
�

V�
drNe−�H�rN�

= �
0

�

dV �P*�V�e−�PVQN �4�

where

P* =
� ln�QN�

��V
�5�

is the volume-dependent internal pressure, which is distinct
from the pressure P imposed by the external reservoir. The
deviation of P* from P increases as V decreases, and is
thought to be significant only for small systems. In this work
this factor is omitted, potentially leading to another source of
finite-size error in addition to that induced by periodic
boundaries.

The partition function can be reexpressed �23� in a
slightly simpler form by “clamping” the position of particle
1,

��N,P,T� = �
0

�

dV e−�PV V

N
�

V�
drN−1e−�H�rN� �6�

where all factors of � are dropped as they play no role in this
study, recognizing that calculated free energies are configu-



rational contributions only. This is the final form of the par-
tition function used in this work.

A. Doubling and halving

MC moves attempt to double the system �if it is single
sized� or halve the system �if it is double sized�. These at-
tempts are chosen with equal probability. A doubling move
doubles the volume and number of particles. Particles are
created with coordinates determined by their labels, i.e.,

r j = r j−N + Lx + �r j �7�

for j=N+1, . . . ,2N, where Lx is a vector, with length Lx,
equivalent to one of the primary single-size simulation box
lengths. �r j is a random displacement, chosen with uniform
probability from within a sphere of radius �1Lx, where �1
	1 is the initial tolerance. A halving move halves the vol-
ume and deletes particles N+1, . . . ,2N.

In addition to these moves, other MC moves ensure tem-
perature and pressure equilibration. For temperature equili-
bration the position coordinate displacement moves are spe-
cialized to improve sampling in the double-size system. In
this case two particles, with labels j and j+N, are both
moved simultaneously �j is chosen at random� by the same
amount 
r j, which is chosen as per the usual displacement
selection criteria for particles in the small system. Then one
of the particles �j or j+N, chosen randomly with equal prob-
ability� is displaced by a further smaller amount �r�. If the
particles exceed their tolerance then the move is rejected,
i.e., if

�r j − �r j+N − Lx�� � �iLx �8�

for j=1, . . . ,N �and where i=1 in this case�. If this multiple-
move approach were not adopted then only individual moves
within the tolerance criteria would be allowed, and such
moves would be very small and inefficient when �i is small.
Of course, the usual individual particle displacement moves
are performed instead in the single-size system, and the po-
sition of particle 1 is never moved because it is clamped. To
equilibrate pressure the usual volume scaling moves are at-
tempted, i.e., the position coordinates of each molecule �in-
cluding the clamped molecule� are scaled by randomly
choosing a step in the volume with uniform probability on
the range ±LV.

The acceptance criteria for these moves are defined to
achieve microscopic reversibility. This requires satisfaction
of

�opon
chpon

acc = �npno
chpno

acc �9�

where �x is the probability density that the system resides in
an infinitesimal element of coordinates corresponding to mi-
crostate x, pon

ch is the probability of choosing the trial move
such that microstate o �the old state� is transformed to mi-
crostate n �the new state� given that the system resides in
microstate o, and pon

acc is the probability of accepting this trial
move. The acceptance probabilities are related by

pon
acc = min�1,qon

acc� ,

qon
acc = �qno

acc�−1. �10�

From the partition function �6� we have

� �
V

N
e−�PVe−�HdV drN−1 �11�

and so given pon
ch and pno

ch the pon
acc are uniquely defined.

Consider molecular coordinate moves first. For the single-
size system qon

acc is exactly the same as for any conventional
isothermal simulation if pon

ch = pno
ch. For the double-size system

we have

qon
acc = exp�− �di�Hn − Ho�� �12�

as well, where the subscript di denotes the double-size sys-
tem corresponding to tolerance �i. But now, depending on
the replication tolerance, the value of the configurational en-
ergy of the double-size system is approximately double its
value for one-half of this system. So for i=1 we can write

qon
acc � exp�− 2�d1�Hn

h − Ho
h�� �13�

where the superscript h denotes the Hamiltonian of one-half
of the double-size system. This indicates that the constrained
double-size system will behave like an unconstrained system
at a lower temperature. So, if we set Td1=Ts, where subscript
s denotes the single-size system, then in general the crystal
will contract. This needs to be avoided so that system dou-
bling and halving moves are performed efficiently �see be-
low�. Hence, we instead choose Td1�Ts to ensure that the
double-size system does not significantly contract and so that
the energy of the constrained double-size system with toler-
ance �1 is sufficiently close to twice the energy of the single-
size system.

Now consider volume moves where pon
ch = pno

ch. Because
particle 1 is clamped we have

qon
acc =

�n

�o
=


Voe−�Hne−�P
Vo

N
dV�
dr�N−1

Voe−�Hoe−�PVo

N
dV drN−1

= 
Ne−��Hn−Ho�e−�PVo�
−1� �14�

where 
=Vn /Vo, i.e., precisely the same acceptance criteria
as for conventional isothermal isobaric simulations �2�. Note
that because the tolerance is defined to scale with system size
these volume-scaling moves can never violate the tolerance
constraints �8�. However, there is an additional complication
for the double-size system. If we consider a crystal of hard
spheres and denote the probability that no particle overlaps
are generated on attempted compression for the uncon-
strained double-size system by pc, then for the constrained
double-size system this probability is roughly �pc, depending
on the replication tolerance. Expansion moves are not af-
fected in this way. So in general the constrained double-size
system behaves like an unconstrained system at a higher
pressure than Pd1. So, just as for particle displacement moves
above, if we set Pd1= Ps then in general the crystal will con-
tract. Hence, we instead choose Pd1� Ps to ensure that the
volume of the constrained double-size system with tolerance
�1 is sufficiently close to twice the volume of the single-size
system.



Finally, consider doubling and halving moves. These are
compound moves that involve a change in volume and a
change in particle number. Consider the volume-change sub-
move first. This move is most easily defined as the limit of a
more general kind of move. That is, consider the move con-
sisting of expanding �or shrinking� an end slab of the simu-
lation so that total volume is doubled �or halved�. In this
case, the end slab of length Lx� of the simulation box is ex-
panded �or contracted� by a factor �=Lx /Lx�. By taking the
limit Lx�→0 it is possible to ensure that there are never any
particles within this end slab. In the case of a doubling move
the next submove consists of replicating the particles in the
original volume according to the coordinate choices given in
Eq. �7�. In the case of a halving move this submove consists
of deleting particles N+1, . . . ,2N. To ensure that the correct
permutation of particle labels is preserved when performing
these addition and deletion submoves we must be careful
with calculating periodic images. First, before these sub-
moves are performed, periodic images should be “unwound”
so that particles that have swapped sides are moved back to
their nonperiodic positions outside of the original simulation
cell. Then the addition or deletion submoves are performed
in accordance with Eq. �7�. Finally, periodic images are re-
applied in accordance with the new simulation cell bound-
aries. Note that this convention must also be followed when
analyzing the positions of particles j and j+N according to
Eq. �8�.

From Eqs. �6� and �9� we have for doubling moves

qsd
acc =

2Vse
−�d1Hde−2�d1Pd1Vs

2Ns
2dVsdr2Ns−1

Vse
−�sHse−�sPsVs

Ns
dVsdrNs−1	dr

Vr

Ns

= 2Vr
Nse−��d1Hd−�sHs�e−Vs�2�d1Pd1−�sPs� �15�

where Vr=4���iLx�3 /3. Because qds
acc is defined via Eq. �10�

we find generally, depending on the replication tolerance,
that one of the acceptance probabilities for these doubling
and halving moves is very close to 1 while the other is very
close to 0. So to improve statistics the double-size system is
biased by an amount

exp��s�0Ns�

�V̂r�Ns

�16�

where V̂r=4���iL̂x�3 /3 and L̂x is a fixed and typical value of
Lx. This yields

ln�qsd
acc� = Ns��s�0 + ln�Vr/V̂r�� − ��d1Hd − �sHs�

− Vs�2�d1Pd1 − �sPs� + ln�2� �17�

for doubling and halving moves. None of the other types of
MC move are affected by this bias. The initial tolerance �1 is
chosen to ensure that the acceptance probability of a dou-
bling move is not too small �i.e., Hd�2Hs�, while �0 is
chosen to ensure equal sampling of single- and double-size
systems.

B. Relaxation

Having transformed the single-size system to a con-
strained double-size system we now need to relax the con-
straint, measuring the free-energy difference between the
constrained double-size system and the unconstrained
double-size system. Potentially the most efficient way of
achieving this is with quadrature, i.e., calculating the rate of
change of free energy at many points distributed along the
required path and then integrating along the path on the basis
of an interpolation scheme. But in this work, which is fo-
cused on the feasibility of the SR approach, simple param-
eter hopping is employed instead, which calculates the free-
energy difference between the two end points of a hop, and
then connects very many hops together to traverse the re-
quired path.

For each hop a multicanonical simulation is performed
that samples states consistent with �i and �i+1, i.e., each hop
consists of a “dual-canonical” simulation. Relaxing and con-
straining moves are allowed that enable a system with Nd
particles at pressure Pi, temperature Ti, and tolerance �i to
switch back and forth to a system at pressure Pi+1, tempera-
ture Ti+1, and tolerance �i+1 �note that the particles them-
selves are not moved during these switches�. Relaxing moves
are attempted if the double-size system is constrained while
constraining moves are attempted �with equal probability� if
the double-size system is relaxed. A path is traced thorough
�P ,T ,�� space such that the initial point �Pd1 ,Td1 ,�1� is
connected to the final point �Ps ,Ts ,�m� via m−2 other points
�corresponding to m−1 separate multicanonical simulations�
where the final tolerance is sufficiently large that it no longer
has any significant effect on the system, i.e., the free-energy
difference between �Ps ,Ts ,�m−1� and �Ps ,Ts ,�m� is negli-
gible. The path is easily defined; �=�i+1 /�i can be set to a
constant, while a simple algorithm, described below, sets
�P= Pdi+1− Pdi and �T=Tdi+1−Tdi to ensure that the average
particle and energy densities of each system do not stray too
far from those of the unconstrained system at Ps and Ts. In
addition to these relaxing and constraining moves the same
particle displacement and volume change moves as described
above are also allowed.

The acceptance ratio for relaxing moves if pi�i+1�
ch = p�i+1�i

ch is

qi�i+1�
acc = 	 Vr,i

Vr,i+1

Ns

e−Hd��di+1−�i�e−Vd��di+1Pdi+1−�iPi�

= �−3Nse−Hd��di+1−�i�e−Vd��di+1Pdi+1−�iPi�. �18�

For constraining moves the acceptance ratio is �qi�i+1�
acc �−1.

Finally, to improve statistics we bias the ith state by
exp��diNs�i� so that relaxed and constrained states are
sampled equally. The acceptance ratio for these moves is
then

qi�i+1�
acc = �−3Nse−Hd��di+1−�i�e−Vd��di+1Pdi+1−�iPi�eNs��di+1�i+1−�di�i�

�19�

where �1=0.
The total Gibbs-free-energy difference between the

single- and unconstrained double-size systems is then



�G = Ns��0 + �m − kBT ln�V̂r��m��
 . �20�

There is no unique way of defining an algorithm for cal-
culating the pressure and temperature steps �P and �T. In
this work it is defined for both pressure and temperature as
follows. First, target volumes and configurational energies
are defined for the double-size system, Vd

t =2�V�s and Ed
t

=2�E�s, respectively, where the angular brackets denote an
ensemble average. Then, Pd1 and Td1 are chosen such that
�Vd1��Vd

t and �Ed1��Ed
t and the indices kV and kE are set

equal to 0. The average volume and energy are measured for
each �i. These indices are set to zero if �Vdi��Vd

t or �Edi�
�Ed

t , respectively, while they are increased by 1 �to a maxi-
mum of 3� if �Vdi��Vd

t or �Edi��Ed
t , respectively. For each

�i+1 the pressure and temperature steps are defined as

�P =
�Ps − Pdi�

m − i
min�kV,m − i� ,

�T =
�Ts − Tdi�

m − i
min�kE,m − i� . �21�

III. RESULTS FOR SIMPLE SYSTEMS

The aim of this work is to test and validate the self-
referential method described above. Simple model crystals
are ideal for this purpose. Hard sphere and Lennard-Jones
�LJ� face centered cubic crystals are chosen because of the
availability of reference data. The hard sphere and shifted-
force LJ potentials are

�HS�r� = �� , r � d ,

0, r � d ,
�

�LJ
sf �r�

= �4��x−12 − x−6� − �LJ�rc� − �r − rc��LJ� �rc� , r � rc,

0, r � rc,
�

�22�

respectively, where x=r /�, r is the pair separation, the prime
indicates the derivative with respect to separation, and �LJ
=4��x−12−x−6�.

The perfect �defect-free� fcc hard sphere crystal is simu-
lated at fluid-solid coexistence, i.e., at a reduced pressure
�23� of Ps

*= Psd
3 /kBT=11.49, where d is the hard sphere di-

ameter �note that in Ref. �23� the reduced coexistence pres-
sure is calculated with an uncertainty of ±0.09�. Temperature
is arbitrary for this system. Simulations with Ns=108 and
256 are performed to examine finite-size effects, which are
expected to vary with system size with a leading-order con-
tribution proportional to 1 /Nd. Statistical errors are calcu-
lated in the usual way �24� using block averages. Regarding
the probabilities for choosing each trial move, i.e., pon

ch = pno
ch,

they are in the ratio 1 :Ns
−1 :Ns

−1 for displacement, volume,
and doubling and halving moves during the replication stage,
and 1:Nd

−1 :1 for displacement, volume, and relaxation or
constraining moves during the relaxation stage.

Simulation parameters and results are given in Table I. I

choose Pd1
* =6.375 and �1=0.001/ L̂x. The final result is �*

=� /kBT=16.08±0.02. These results confirm �within statisti-
cal error� the validity of the result in Ref. �23� for hard
sphere fluid–perfect fcc solid coexistence because the �very
accurate� equation of state of Kolafa et al. �25� for a hard
sphere fluid gives �*=15.99±0.10 at P*=11.49±0.09.

For the perfect fcc shifted-force LJ crystal at its triple
point, i.e., at a reduced pressure and temperature of P*

= P�3 /�=0.001 82 and T*=kBT /�=0.56, one simulation
with Ns=256 is performed. Simulation parameters and re-
sults are given in Table II. I choose Pd1

* =0, Td1
* =0.7616, and

�1=0.01/ L̂x. The final result is �*=� /�=−3.20±0.02, al-

TABLE I. Simulation parameters and results for the SR method applied to the fcc hard sphere crystal. Ns

is the number of particles in the single-size simulation and “Trials” is the total number of attempted MC
moves—dividing by m gives the number for each relaxation simulation. � is the tolerance ratio �see the text�
in each relaxation simulation and �=�0+�m is the total chemical potential. The numbers in parentheses are
statistical errors to one standard deviation.

Type Ns m Trials �106� � �0
* �m

* �*

Replication 108 50 1.2311�6�
Relaxation 108 2500 10 000 1.00268 14.769�14� 16.000�14�
Replication 256 100 1.2367�7�
Relaxation 256 5000 40 000 1.00134 14.811�12� 16.048�12�

TABLE II. As for Table I except that the shifted-force LJ crystal is simulated.

Type Ns m Trials �106� � �0
* �m

* �*

Replication 256 100 −0.2939�3�
Relaxation 256 2000 800 1.00225 −2.910�22� −3.204�22�



though this does not include an analysis of finite-size effects
because of the numerical expense involved. These results
agree well with those of Errington and co-workers �26� and
Sweatman and Quirke �27�, which together give �*

=−3.23±0.02 �the gas phase result from a gas-liquid Gibbs
simulation �27��.

IV. SUMMARY

The SR methodology described above is appropriate for
simple atomic systems that form bulk crystalline solids with
cubic unit cells. But this method is potentially very general,
and is easily generalized to treat molecular crystals formed
from noncubic unit cells. When treating molecular crystals it
will be important to constrain internal molecular degrees of
freedom in an appropriate manner during replication. For
frozen internal molecular degrees of freedom �such as the
orientation of water molecules in ice� a constraint is needed
in much the same way as it is needed for molecular position
coordinates. These types of constraint will increase the path
length substantially. For nonfrozen molecular degrees of
freedom �such as the orientation of nitrogen in its orienta-
tionally disordered crystalline � phase �28�� the constraint
can be much weaker and should not contribute significantly
to the numerical effort required to traverse the path. Con-
strained molecular degrees of freedom need to be treated in
the same way as position coordinates, i.e., constrained on
system doubling and then gradually relaxed. The same meth-
odology can be employed to treat confined crystals with at
least one degree of translational invariance, such as crystals
confined in rigid slit pores. In this case pressure should be
replaced by grand-potential density �or interfacial tension�
and simulations are performed in the N�T ensemble by al-
lowing fluctuations in simulation box vertices parallel to the
translational invariance. Further work is required to investi-
gate the possibility of including defects in the free-energy
calculation.

The approach described above is not yet efficient. The
overwhelming amount of CPU time is spent performing the
relaxation stage. For example, for the double-size Lennard-
Jones system the 5000 connected hops that traverse the re-
laxation path required about six days of computation on a
standard desktop �3.0 GHz� PC. There are two reasons for
this. First, the free-energy difference between the single- and
double-sized systems is large, resulting in a long path length.
Second, the parameter hopping approach, although robust, is
not efficient. Future work will aim to improve this aspect and

make comparison with other methods. The most obvious
idea for improving efficiency is to implement thermody-
namic integration �perhaps along the lines described in Ref.
�14��, rather than parameter hopping, as the technique used
to relax the double-size system from its initially highly con-
strained state to its fully relaxed state. This could potentially
reduce the number of individual relaxation simulations from
several thousand to less than 100, consequently improving
efficiency by perhaps 1 to 2 orders of magnitude. Another
possibility is to attempt to adapt Tilwani and Wu’s ingenious
retiling algorithm �29�, which has been developed for 2D
disk systems, to general 3D crystalline solids. This would
then allow the large system to be only slightly larger than the
small system, say one unit cell larger for a bulk crystal rather
than double size, resulting in a much shorter path between
initial and final states. Combination of both these efficiency
enhancements could perhaps yield a methodology several or-
ders of magnitude faster than the current implementation for
typical simulations.

The SR approach developed above can be considered a
reinvention of the SR approach described by Barnes and
Kofke �12�, although there are some significant differences.
In their work they considered for convenience a system of
1D hard rods on a line, which they argue can be considered
a primitive form of crystal in a limited sense. They cast their
canonical partition function in terms of vibrational modes,
and use free-energy perturbation to traverse the path between
single-size and double-size systems. In contrast, this work
employs parameter hopping to traverse between the two
subsystems—a technique that they also suggest as being
worthy of investigation as it has the advantage of being re-
versible �see their work for a discussion of this�. They also
work in the canonical ensemble rather than the isothermal-
isobaric ensemble used here, potentially leading to additional
ensemble-induced finite-size effects �although their system
was sufficiently large that these effects were not significant�.
They conclude with some suggestions for further work con-
cerning the inclusion of temperature and higher dimensions
so that more realistic 2D and 3D crystals can be treated.
These concerns are effectively answered here. However, this
work demonstrates that both the temperature and pressure
need to be manipulated during the SR process to ensure that
it is feasible.
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