
Abstract
New devices with the efficiency of full-custom designs and
the programmability of FPGAs will ease many aspects of
the design of complex systems, without the high cost of
mask production. The possibility of in-circuit programming
and even dynamic reconfiguration offers great advantages
over the traditional design approach. One instance of a fully
programmable architecture which offers a platform for rapid
prototyping, quick market and application evaluation, is
introduced in the form of a field programmable function
array (FPFA). The design of such a device is extremely
challenging as the aspects of physical design for speed and
low-power, the construction of an ALU which is optimal for
as many applications as possible, as well as highly efficient
mappings of algorithms, are extremely important for a
successful device which suits many applications. This paper
introduces the reader with the concept of reprogrammable
devices with graph-based execution of arithmetic
expressions, the corresponding principles of operation, the
aspects of low-power operation of the proposed design, the
corresponding physical design of the ALU, algorithmic
mappings of systems on a chip and the performance aspects
compared to other architectures and implementations.

1. Introduction
The design of high performance application-specific VLSI
circuits is costly and prone to errors. This is why
application specific full-custom design is mainly restricted
to consumer products. However advanced innovative
applications not related to mass market production, tend to
get too little attention or are even fully neglected as a
market opportunity due to lack of experienced designers,
the high initial cost due to the need of mask-production, the
uncertainty of the success of a new standard, and the
uncertainty of the expected market-share. Substantial losses
in the initial product development cycle are hence quite
usual, due to overestimation of the market pull and/or late
market introduction. Price erosions, on the other hand,
make it necessary to update the high performance product
each time that a new process is introduced, i.e. each 1.5
year, even if the volume is not reached. An additional
unfortunate complication is that almost none of the high
volume designs can be scaled in performance, in a way
similar to a microprocessor, to take full advantage of a new
process, due to the adoption of a clock-synchronous design
style in which the clock-rate is directly proportional to the
rate of the incoming signal (e.g. Radio or TV). The
implication is that the arithmetic blocks, busses, memories
and the controller(s) have to be reconfigured/redesigned in
order to obtain a cost-effective solution in the new process.
The time to market gets fully out of hand as the chips grow

in complexity [7], hence it becomes extremely difficult in
the near future to follow the market trend when the current
full-custom design-style is to be kept as is. The existing
practice in the area of logic design is quite different. The
introduction of Field Programmable Gate Arrays (FPGAs)
has given the designer a rather fast turnaround time at
extremely low cost levels using the latest high performance
process. Very few designs are converted into a dedicated
chip, as the FPGAs offer in most cases the most cost
effective solution. The use of compilers makes it possible to
migrate a design with relatively little effort to a new
process, without any need to reconsider a redesign nor to
worry about testing. The extension of the FPGA approach
to the level of arithmetic operations is getting more
attention nowadays. For instance the reconfigurable
pipelined datapath (RaPiD[5]) design merges multipliers
with FPGA primitives to implement for instance systolic
functions. Another development is found in run-time
reconfigurable FPGAs ([4]), which implement an increased
functional density, through on the fly reprogramming of the
logic network. This concept works only when the state of
the computation can be kept in a RAM. The reconfiguration
within the RaPiD chip may work well, provided that a
solution can be found for the efficient saving of the state in
the pipeline used in the systolic algorithm. The realization
of a cascadable multiplier primitive takes 10 to 30.000
times as much energy [6] as a dedicated multiplier, when
realized with an energy efficient ROM and slightly more
energy, when realized with a RAM, using word-lengths
ranging from 2 to 8 bits. FPGA-based realizations of
arithmetic blocks which use LUTs to implement their logic
behavior, have hence a comparable overhead when realized
in the same process. This shows that multiplication is
energy inefficient in general on an FPGA. An exception
should be made for a multiplication with a constant with a
wordlength ranging from 6 to at most 8 bit. Hence it can be
concluded that FPGAs are too power inefficient for the
implementation of general purpose algorithms. Power
consumption is however one of the main issues when over
one hundred ALUs with a 16\Theta16 multiplier core are to
be operated at a target clock-rate ranging from 40 to
200Mhz. The aspects of low power consumption, high
throughput minimal wiring and excellent utilization of chip
real-estate, have been balanced in the highly optimized
FPFA design, described in this paper. The paper shows the
status of ongoing research which was initiated late 1996
with an MSc assignment [1] targeted at the aspects of the
design of a high performance re-programmable device
which could be used to execute many algorithms, including
an instance of the Super Resolution Volume Rendering
Algorithm [3].
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Figure. 1. The proposed personal communicator device with
its user interfaces

A second M-Sc. assignment [2] focused on the detailed
design using VHDL of the ALU and a comparison with
highly optimized Wallace tree multiplier designs based on
full-custom layouts. The current focus is on completeness of
the ALU, programmability, wireability and ALU utilization
for a wide class of applications, as a function of the
interconnect between operators, multiplexers and busses
within the ALU blocks. These aspects are studied using
typical algorithmic benchmarks taken from a wide range of
applications. One of the innovative products, which we are
pioneering, is the personal communicator shown in Figure
1. It uses a high speed radio-link within a micro-cellular
radio system. The Orthogonal Frequency
Modulation/Demodulation protocol uses an FFT to make
the link insensitive to bit errors due to multi-path reception.
The proposed high-speed link can be used to transmit audio
signals with voice as well as music quality. The additional
capability to transmit real-time graphics and/or TV
sequences, as well as encrypted business information
including e-cash makes the digital communicator really
multipurpose. Even applications which are not known
and/or standardized today can be implemented using on the
fly re-programmability. The successful design of a
reconfigurable CMOS platform will certainly lead to a large
amount of applications in almost any part of the industry,

including telecommunications, audio, multimedia, transport,
aviation, banking, etc. etc.
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Figure. 2. Schematic diagram of a first generation ALU-
datapath, not showing pipeline registers and latches
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Figure 3. First generation ALU-block with Look-Up Tables,
and Programmable interconnect points

2. Principles of operation
Figure 2 shows the schematic diagram of one first
generation ALU. This ALU can execute 3 additions /
subtractions, 1 multiplication, and 3 bitwise-boolean
operations on two operands. The ALUs are grouped in
ALU-blocks as shown in Figure 3. The ALUs communicate
with each other and/or with look-up tables (LUTs) over
their NW, NE, SE and SW I/O ports using a switch matrix
with programmable interconnect points (PIPs). Some of the
busses are rather short as they realize a nearest neighbor
connection, whereas others are used to reach ALUs within a
radius of 4 to 8 units. Communication between ALU blocks
is supported using bi-directional switches. The LUTs can
communicate over a global high speed IO-bus which can be
used for internal, i.e. on-chip, communication as well as
communication to a burst mode peripheral processor. The
programmed datapath contains the execution graph, which
is active each clock-cycle. There is no explicit controller, as
the ‘control’ is embedded in the dataflow graph, in the same
way as this is done in a normal program. It is the
‘controller’ part of the graph which causes other ALUs to
read input signals from the LUTs for further processing.

Graph-based execution is a powerful concept, which comes
close to general computing on one hand and the
implementation of dedicated hardware on the other hand,
provided that nested functions can be executed in-line using
the dedicated addressing modes, treated in more detail later.
Conditionals are executed within an ALU using
multiplexers. The control signals of the multiplexers are
computed in a small FPGA section, located near the ALUs,
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which gets its inputs from the condition-codes computed on
the datapath. Registers, which are not shown in the Figure
2, are placed in the datapath to make a pipelined operation
of the graph at a high clock-speed possible. Latches used to
store programmable constants are not shown either.

3. Low-power operation
The concept of graph-based execution has a power
advantage against a DSP or a RISC engine because it does
not fetch and decode an instruction each clock-cycle.
Placement and wire-length is critical when low-power
execution is the goal. A theory for low-power operation was
developed [6] to ease the understanding of this issue. A
crucial concept is the power radius of an arithmetic
building-block. The power radius gives the length of the
wires, i.e. inputs and outputs, such that the energy
consumed in the wiring equals the energy consumed in the
arithmetic building-block, assuming random inputs. The
power radius for a full-adder is 0.7mm in a 1¯ m CMOS
process. This is in the order of 20 times its x- or y-
dimension. The power radius of a tightly placed 16x16
multiplier is in the order of 30 to 40 times its x- or y-
dimension. There is a tendency that the power radius
decreases for ‘better’ processes. This implies that the wiring
on a chip should be kept short whenever possible. Note that
the assumption of random inputs assumes that the arithmetic
blocks perform an arithmetic operation. The power radius
of a well-placed adder is just 5=3 of the power radius of a
full adder. There are many applications in which multiple
additions are combined with a single multiplication. It is
important to design an ALU in which multiple adders are
placed adjacent to a single multiplier, in order to take
advantage of the fact that the block with the small power
radius is contained within the block with the larger power
radius. These aspects are the main low-power features
which have contributed to the ALU design given in Figure
2, in which a restricted set of I/O ports is used to let the
ALU communicate with a network used to interconnect the
ALUs. The resulting graph executes an expression of the
inner loop of the application program in each clock-cycle. It
follows from the concept of the power radius that the busses
used to interconnect the ALUs should be kept short, i.e.
they should have a length of at most 4 to 8 ALUs to allow
for a 10% to 20% energy overhead in the wiring, depending
on the process (1�m ... 0.18�m). Figure 3 shows one
possible configuration of ALUs and Programmable
Interconnect Points (PIPs) in an ALU-block. It is
guaranteed that all arithmetic executed within one ALU-
block is executed with minimal energy overhead due to the
short interconnections used within the block. Another aspect
of the theory of low-power operation is related to the
balance between the amount of energy needed to execute
arithmetic operations and the amount of energy needed to
read and or write a small memory (LUT). Using the model
introduced in [6] one can calculate that the amount of
energy needed to read or write a well designed 16-bits wide
LUT with 64 entries is 40% of the energy needed to
perform a multiplication using full-adder cells designed for
low-power operation.

4. Physical design of the ALU
The ALU shown in Figure 2 was described in VHDL, using
the Compass VLSI design tools, to ease the preparation of
an accurate description which could be implemented in full-
custom design style. The description included the pipeline
registers mentioned as well as a micro-PAL, used to
implement arbitrary conditionals within one ALU. The size
of the ALU pointed out to be 2.74 x 2.20 = 6.02mm2 in an
0.8¯ m, 5V two metal-layer CMOS process, using the high
performance library. The Compass tools estimated a power-
consumption of 171mW at 10MHz for the whole ALU and
66.29mW for the 16 x 16 Booth-recoded Wallace Tree
multiplier-adder which can operate on signed as well as
unsigned operands in any combination. Using the high
speed library, an energy consumption of 6.6nJ for each
multiply-add operation was found and a worst-case
propagation delay of 41.11ns at 69.9 oC, in a cell measuring
1.947mm2. A full-custom Wallace Tree multiplier with a
fast final adder, using a carry select structure with ATLAS
full-adders [8] was realized in the same process using the
full-custom design tools. This multiplier-adder has an
energy consumption of 540pJ for each multiply-add
operation and a typical propagation delay of 22.7ns at 25
oC, in a cell measuring 0.306mm2. A realization of the
multiply-add primitive based on STD-cells was also made
for a 0.35¯ m, 3V five metal-layer CMOS process. This
multiplier-adder, has a typical worst case propagation delay
of 13.4ns at 2.7V and 85 oC, in a cell measuring 0.156mm2.
The execution of conditionals was initially mapped onto a
micro-PAL. Two realizations of the micro-PAL were
studied. The most straightforward one used registers to
store the encoding of the conditionals. A more compact,
RAM-based, design was considered as well. Both
realizations resulted in a large block, which almost ruined
the overall timing of the ALU, due to the fact that the timing
analyzer came to the conclusion that the sum of all delays
within the arithmetic blocks was the delay of the overall
cell. A better solution is sought using the FPGA-blocks
mentioned in section 2. These physical design studies
resulted in a detailed description of the ALU, along with
guidelines for the construction of a high-density, low-power
design. Most striking are the differences in energy
consumption for the multiply-add primitive, which ranges
from 540pJ in full-custom to 6.6nJ using a VHDL based
synthesis approach, the cell-area of this building-block
ranges from 0.306mm2 to 1.947mm2. It may be clear that
these differences should not be neglected in the realization
of such a new design-platform. The routability of the
interconnect busses may be a problem as well, however the
presence of five to six metal layers in modern CMOS
processes gives opportunities which can be integrated with
relative ease in a full-custom design-style. It should be
noted that power-consumption and area utilization are the
main design issues. For instance a 100mm2 chip can hold as
few as 16 multiplier-add primitives with related ALU-
overhead, using the STD cell approach. They will dissipate
16 x 6.629n x 40M = 4.2W in a 5V 0.8�m process.
Approximately 108 multiplier-add primitives will fit using
the full-custom approach, when the same amount of ALU-
overhead is taken into account. The resulting power-
consumption at the same clock-rate is: 108 x 540p x 40M =
2.3W. I.e. 6.75 as much arithmetic is performed at a
substantially lower energy consumption level when the full-
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custom approach is used. It is our objective to make these
benefits of the design platform introduced, available to
system level architects who will be freed from the burden of
optimized physical design, testing, and process migration. It
will require a much more detailed analysis before the last
word about energy consumption and performance has been
said. The problem gets even worse in advanced CMOS
processes, like for instance 0.25 or 0.18¯ m CMOS. The
increased power density comes from the possibility to
increase the clock-rate while keeping the area constant.
Operation at VDD values of 1V or below, using a tunable
Vt, may be needed to get the full advantage of the
arithmetic capabilities of the proposed devices at acceptable
power levels.

5. A system on a chip
Full-custom VLSI implementations tend to implement a
complete system on a chip. The introduction of arithmetic in
an FPGA like environment does not necessarily imply that
all chip area should be devoted to the graph-based
execution of highly optimized arithmetic expressions.
Hence it will be needed to find a balance between the
arithmetic section and the logic section of the design
platform. Consider for instance the radio link used in the
personal communicator introduced in section 1. The FFT
and IFFT algorithm used in this system are used to prevent
problems with multi-path reception. Error correction
circuits should be added to recover bits which cancel due to
interference. Complex addition and complex multiplication,
together with appropriate routing and suitable wireability
can be used to construct a butterfly unit from the resources
in an ALU-block. Address generation and addressing of
LUTs is needed to form an FFT from these butterflies.
FPGA based units with built-in adders and on-chip
memories are indispensable for the efficient construction of
an error correcting circuit, like for instance a Viterbi
decoder or a Reed-Solomon decoder. Similar systems may
be needed for systems capable of speech recognition and/or
pattern recognition. Graphics algorithms seem quite
different, but at closer inspection they utilize quite similar
resources, even when such diverse algorithms as (sparse)
volume rendering and surface rendering are considered. The
concept of reconfiguration / reprogrammability demands
that the platform should suit all applications. This aspect of
systems design is most challenging, as we should not try to
solve the design problem of one application but for a family
of applications. It would go much too far to discuss any
separate systems which we have reviewed during our design
effort. Even a single instance of a complex system, like the
digital communicator, which should not only be capable to
maintain a radio link, but should as well be able to maintain
a compressed audio or video stream, is a good example of
the complexity of the design problem of a high performance
low-power device, which can be reprogrammed on the fly to
support a wide range of applications. The design of a digital
communicator is rather challenging due to its central role in
the man-machine interface. The computational resources
needed in this application domain hardly differ from the
ones needed for the construction of a high performance
digital copier, web-TV’s and many other, related products.

6. Contemplating the architecture
Several applications are used to verify the project against
the goals set. A complete volume-renderer was used in [1]
to define the initial (basic) functionality of the proposed
platform. The idea of a graph-based execution greatly
helped to simplify the overall concept. The fact that all
nodes in the graph execute an operation in one clock-cycle
makes it very attractive (almost mandatory) to execute
simple functions like: sin( )x , cos( )x , 1/ x ,

shading( , )α β , datavalue x y z( , , ) , etc. in one clock-

cycle as well. These example functions show that there is a
need for 1D, 2D and 3D addressing modes, used in
conjunction with 1D, 2D and 3D interpolation functions,
executed by 1, 3, or 7 ALUs to calculate intermediate
function results not stored in the 2, 4 or 8 LUTs addressed
for these evaluations of a continuous function. It was not
needed to resort to linear interpolation only. Higher order
interpolations could be mapped efficiently on the ALUs
described, using the Bessel interpolation technique. The
resulting initial ALU design contains hence at least one
multiplier and two adders, which are needed for the efficient
implementation of a linear interpolator which calculates:
F B A h A= − +( ) . The VHDL synthesis described in [2]

showed that the micro PAL was not suited for this task. The
initial design has four I/O ports, one at each corner of the
ALU. This is sufficient for an efficient implementation of
the linear interpolation function on one ALU. A total of at
least 28 instances of this function was needed in the Super
Resolution Volume Rendering algorithm [3]. The resulting
ALU-structure is shown in Figure 2. The Super Resolution
Volume Rendering algorithm can be implemented using 60
out/of 64 ALUs. The second M-Sc. project [2] focused on
the implementation of the ALU-design in VHDL. First an
initial implementation was made. The results were that the
adders, the multiplier and the micro PAL are parts which
cause the most delay. Also it showed that the micro PAL
was much larger then expected and that it could generate
algebraic loops. The adders and the multiplier were
optimized resulting in a speed increase of 16%.

A FIR filter was used as a benchmark to be able to compare
the speed to some available alternatives. Because of the
parallel nature of the FPFA it can calculate one result of a
FIR in one clock-cycle. Its high density of multipliers makes
it easy to implement large filters. A Texas Instruments
TMX 320C6201 running at 200MHz can calculate an 8 tap
FIR filter in 4 clock cycles resulting in an output of
50MSPS. The Altera FLEX10K FPGA can achieve
61MSPS for a 16 taps 8 bit FIR filter. The current VHDL
implementation of the ALU of the FPFA can run at 25MHz,
but expectations based on Altera’s projections on scaling
from 0.8�m with two metal layers to 0.35�m with four
metal layers will increase the speed with a factor of 2.5.
This results in 63MHz. The FIR filter uses for an 8 tap filter
12 ALUs. Four extra ALUs are needed because one tap uses
5 I/O ports. When constants are added or the number of I/O
ports is increased can the structure calculate an 8 tap filter
in 8 ALUs. Current research uses a butterfly of a Fast
Fourier Transform (FFT) to optimize the design of the
ALU. The original implementation needs 8 ALUs to
implement one butterfly. The butterfly uses subtraction
followed by a complex multiplication and an addition. If the
amount of multipliers and adders is considered it should be
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possible to implement this on four ALUs. However the
restrictions generated by the number of I/O ports and the
structure of the ALU cause that eight are needed. The FIR
filter already showed that the number of ports has to be
increased to at least five. This change and an increase of the
flexibility of the ALU make it possible to implement one
butterfly four ALUs. The uses of larger wordlengths could
also be very useful. For an efficient implementation of a
multi-word multiplication an ALU needs 4 inputs and 2
outputs. The current ALU design can be used to implement
a linear interpolation and the other primitives needed for a
renderer. Currently it is considered to replace the micro
PAL with a small FPGA. The utilization can be increased
by increasing the number of inputs and the flexibility of the
ALU.

7. Conclusion
The concept of graph based execution has been shown using
ALUs and a programmable interconnect. Typical tests,
which could be expected to be hard to map successfully,
were chosen as benchmarks to contemplate the viability of
the platform. A complete Super Resolution Volume
Renderer, capable of real-time visualization was taken as
the initial application, the digital communicator, including
FFT algorithms and error correcting circuits is another full
fledged application under consideration. On the algorithmic
level, a FIR filter was studied, as well as complex
multiplication and addition. In all cases a good utilization of
resources was obtained, provided that sufficient busses were
used. The initial ALU design, described in detail in this
paper was using 4 I/O ports, which could be configured as 2
inputs and 2 outputs, or as 3 inputs and one output. It can be
shown that 3 inputs and 2 outputs are needed when one
section of an adaptive FIR-filter should be mapped on a
single ALU. Multi-precision multiplication requires 4 inputs
and 2 outputs, when it should be mapped efficiently on a
single ALU. This indicates that advanced algorithmic
kernels require substantial I/O to be efficient. This fits in an
ideal way in a full-custom design style, in which all metal
layers of modern processes can be used for interconnect,
rigid power supply rails, de-coupling etc. It has been shown
that the speed of one single ALU does not need to be slow,
compared to the speed of a single RISC CPU used in
modern computers. The aggregate speed of a 200 ALU
0.5�m, 3V, CMOS chip is considerably higher, due to the
implicit parallelism. The energy consumption is remarkably
low due to the fact that the design style does not have to
focus on high speed in the presence of large wiring
capacitance. Numerous applications would benefit from the
fast time to market, offered by the platform. The low initial
cost, due to the reconfiguration concept, will most likely
serve new applications as well as replace full-custom chips
in traditional applications as soon as a prototype of the
platform can be produced.
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