63 research outputs found

    development and validation of rp hplc dad method to quantify hydroxytyrosol content in a semi solid pharmaceutical formulation

    Get PDF
    Many substances of natural origin are contained in pharmaceutical and cosmetic formulations, but lately extra virgin olive oil (EVOO) or EVOO-derived compounds like tyrosol, hydroxytyrosol or oleuropein, thanks to their renowned and long-established outstanding therapeutic and health giving virtues, have made them some of the most interesting products in this field. Nowadays many hydroxytyrosol-based topical formulations are commercialized and over time several analytical methods have been developed. However, new cosmetic formulations containing an olive extract tritated in hydroxytyrosol conveyed in EVOO have recently appeared on the market creating the need to develop and validate a new method that allows the active compound to be extracted and analyzed precluding any interference due to the presence of other compounds naturally present in the EVOO as well as from the co-formulant agents employed, and this has been the goal of our study. Analytical determination was performed by RP-HPLC coupled with DAD detection. Various chromatographic parameters, namely column stationary phase, mobile phase, pH and solvent composition, oven temperature and different clean-up variables were studied. The best chromatographic separation was obtained under the following conditions: a reverse phase C18 column maintained at 25°C with a gradient elution program using acetic acid 0.2% and methanol as mobile phase pumped at 1.5 mL min−1. Detection wavelength was set at 280 nm and the total run time required was 15 min. The high degree of accuracy (98.8%-100.1%) and precision (1.44%-1.68%) achieved using the evaluated method along with the low limits of detection and quantification (2.49 ppm and 3.97 ppm respectively) and the broad linear range observed allowed the target analyte to be satisfactorily determined in new semi-solid formulation containing hydroxytyrosol conveyed in EVOO while avoiding any matrix effect

    Emerging Exotic Fruits: New Functional Foods in the European Market

    Get PDF
    The consumption of exotic fruits is rapidly increasing in European countries. Some of these products have attracted much interest due to their alleged properties of preventing malnutrition, over-nutrition, and disease, maintaining a healthy body. Scientific studies on these fruits are multiplying, including chemical characterizations and biological investigations on in vitro and in vivo experimental models. This review concerns four edible fruits: Hylocereus undatus (dragon fruit), Annona cherimola (cherimoya), Citrus australasica (finger lime), and Averrhoa carambola (carambola or star fruit). By screening biomedical databases, viz. Scopus, WOS, and PubMed, a total of 131 papers have been selected. Data reveals a wide series of biological effects that confirm traditional medicinal uses or suggest new therapeutic applications. Most studies concern problems related to nutrition, such as body redox balance, metabolic syndrome, and hepatoprotective effects, but other properties have been highlighted, including anticancer, antimicrobial, anti-inflammatory, and neuroprotective effects, as well as cardiovascular and skin protection. Pharmacological investigations have also been focused on specific compounds, assuming a potential role in drug discovery. In summary, food products, byproducts, and single compounds derived from these plants could be exploited in the prevention of disease or for specific treatments of health problems

    Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts

    Get PDF
    The present work describes the chemical characterization and the phytotoxicity assessment of essential oils (EOs) obtained from spent materials or pruning waste of four plant species: Zingiber officinale Roscoe used in the juicing industry, Pistacia vera L. var. Bronte used in the food industry, discarded material of industrial hemp (Cannabis sativa L. var. Futura 75), and pruning waste from Cupressus sempervirens L. The phytochemical profile of the EOs was evaluated by gas chromatographic flame ionization detection (GC-FID) and GC-MS analyses, which highlighted the presence of several compounds with a wide range of biological activities. Among them, application possibilities in agriculture were evaluated by studying the phytotoxic activity in vitro against germination and initial radical growth of several seeds such as Raphanus sativus L., Lepidium sativum L., Lactuca sativa L., Solanum lycopersicum L., Lolium multiflorum Lam., and Portulaca oleracea L

    Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion

    Get PDF
    The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p < 0.05) and flavonols (p < 0.05) from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption

    Feijoa Fruit Peel: Micro-morphological Features, Evaluation of Phytochemical Profile, and Biological Properties of Its Essential Oil

    Get PDF
    Acca sellowiana (O. Berg) Burret (Feijoa) is an evergreen shrub, belonging to the Mirtaceae family. The aim of this study was to investigate the micromorphological features of the feijoa fruit peel and to evaluate the phytochemical profile, as well as the antioxidant, cytoprotective, and antimicrobial properties of its essential oil (EO), by several in vitro cell-free and cell-based assays. The micromorphological analysis showed several schizogenic secretory cavities, immediately below the epidermal layer. Forty compounds were identified and quantified by GC-FID and GC-MS analyses. Sesquiterpenes were the most abundant ones (76.89%), followed by monoterpene hydrocarbons (3.26%), and oxygenated monoterpenes (0.34%). The main compounds were \u3b3-Selinene (17.39%), \u3b1-Cariophyllene (16.74%), \u3b2-Cariophyllene (10.37%), and Germacene D (5.32%). The EO showed a strong and dose-dependent antioxidant, and free-radical scavenging activity. Furthermore, it showed cytoprotective activity on the lymphocytes, that have been pre-treated with 100 \u3bcM tert-butyl-hydroperoxide (t-BOOH), as well as a decrease in intracellular reactive oxygen species (ROS), induced by t-BOOH on erythrocytes. A preliminary antimicrobial screening against GRAM+ and GRAM- bacteria, as well as on fungi highlighted that EO showed the best activity against S. aureus and C. albicans (MIC 2.7 mg/mL). In light of these results, feijoa fruit EO could find various applications, especially in the food, nutraceutical, and pharmaceutical fields

    Understanding the effect of particle size and processing on almond lipid bioaccessibility through microstructural analysis: from mastication to faecal collection

    Get PDF
    We have previously reported on the low lipid bioaccessibility from almond seeds during digestion in the upper gastrointestinal tract (GIT). In the present study, we quantified the lipid released during artificial mastication from four almond meals: natural raw almonds (NA), roasted almonds (RA), roasted diced almonds (DA) and almond butter from roasted almonds (AB). Lipid release after mastication (8.9% from NA, 11.8% from RA, 12.4% from DA and 6.2% from AB) was used to validate our theoretical mathematical model of lipid bioaccessibility. The total lipid potentially available for digestion in AB was 94.0%, which included the freely available lipid resulting from the initial sample processing and the further small amount of lipid released from the intact almond particles during mastication. Particle size distributions measured after mastication in NA, RA and DA showed most of the particles had a size of 1000 µm and above, whereas AB bolus mainly contained small particles (<850 µm). Microstructural analysis of faecal samples from volunteers consuming NA, RA, DA and AB confirmed that some lipid in NA, RA and DA remained encapsulated within the plant tissue throughout digestion, whereas almost complete digestion was observed in the AB sample. We conclude that the structure and particle size of the almond meals are the main factors in regulating lipid bioaccessibility in the gut

    Antiangiogenic effects of coumarins against cancer: from chemistry to medicine

    Get PDF
    Angiogenesis, the process of formation and recruitment of new blood vessels from pre-existing vessels, plays an important role in the development of cancer. Therefore, the use of antiangiogenic agents is one of the most critical strategies for the treatment of cancer. In addition, the complexity of cancer pathogenicity raises the need for multi-targeting agents. Coumarins are multi-targeting natural agents belonging to the class of benzopyrones. Coumarins have several biological and pharmacological effects, including antimicrobial, antioxidant, anti-inflammation, anticoagulant, anxiolytic, analgesic, and anticancer properties. Several reports have shown that the anticancer effect of coumarins and their derivatives are mediated through targeting angiogenesis by modulating the functions of vascular endothelial growth factor as well as vascular endothelial growth factor receptor 2, which are involved in cancer pathogenesis. In the present review, we focus on the antiangiogenic effects of coumarins and related structure-activity relationships with particular emphasis on cancerS

    Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ

    Get PDF
    In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process

    In Vitro Evaluation of the Antioxidant, Cytoprotective, and Antimicrobial Properties of Essential Oil from Pistacia vera L. Variety Bronte Hull

    No full text
    Although the chemical composition and biological properties of some species of the genus Pistacia has been investigated, studies on hull essential oil of Pistacia vera L. variety Bronte (HEO) are currently lacking. In this work, we have carried out an in-depth phytochemical profile elucidation by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, and an evaluation of antioxidant scavenging properties of HEO, using several different in vitro methods, checking also its cytoprotective potential on lymphocytes treated with tert-butyl hydroperoxide. Moreover, the antimicrobial activity against Gram-positive and Gram-negative strains, both American Type Culture Collection (ATCC) and clinical isolates, was also investigated. GC-MS analysis highlighted the richness of this complex matrix, with the identification of 40 derivatives. The major components identified were 4-Carene (31.743%), α-Pinene (23.584%), d-Limonene (8.002%), and 3-Carene (7.731%). The HEO showed a strong iron chelating activity and was found to be markedly active against hydroxyl radical, while scarce effects were found against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Moreover, pre-treatment with HEO was observed to significantly increase the cell viability, decreasing the lactate dehydrogenase (LDH) release. HEO was bactericidal against all the tested strains at the concentration of 7.11 mg/mL, with the exception of Pseudomonas aeruginosa ATCC 9027. The obtained results demonstrate the strong free-radical scavenging activity of HEO along with remarkable cytoprotective and antimicrobial properties
    corecore