5,558 research outputs found

    Correction: The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene

    Get PDF
    The authors would like to amend this article based on the discovery that the originally published Acacia ligulata sequence contains assembly errors, which came to light after the publication of the article

    Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia

    Get PDF
    Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny. We then combine this data with previously generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 Acacia species. We use several phylogenetic methods, including maximum likelihood bootstrapping (with and without constraint) and ExaBayes, in order to determine the success of combining a dataset of 4000 bp with one of 189,000 bp. The results of our study indicate that the inclusion of whole genome data gave a far better resolved and well supported representation of the phylogenetic relationships within Acacia than using only amplicon sequences, with the greatest support observed when using a whole genome phylogeny as a constraint on the amplicon sequences. Our study therefore provides methods for optimal integration of genomic and amplicon sequences

    Condensation of Silica Nanoparticles on a Phospholipid Membrane

    Full text link
    The structure of the transient layer at the interface between air and the aqueous solution of silica nanoparticles with the size distribution of particles that has been determined from small-angle scattering has been studied by the X-ray reflectometry method. The reconstructed depth profile of the polarizability of the substance indicates the presence of a structure consisting of several layers of nanoparticles with the thickness that is more than twice as large as the thickness of the previously described structure. The adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the hydrosol/air interface is accompanied by the condensation of anion silica nanoparticles at the interface. This phenomenon can be qualitatively explained by the formation of the positive surface potential due to the penetration and accumulation of Na+ cations in the phospholipid membrane.Comment: 7 pages, 5 figure

    Elastic energy of polyhedral bilayer vesicles

    Get PDF
    In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol. 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron

    Altered hippocampal function in major depression despite intact structure and resting perfusion

    Get PDF
    Background: Hippocampal volume reductions in major depression have been frequently reported. However, evidence for functional abnormalities in the same region in depression has been less clear. We investigated hippocampal function in depression using functional magnetic resonance imaging (fMRI) and neuropsychological tasks tapping spatial memory function, with complementing measures of hippocampal volume and resting blood flow to aid interpretation. Method: A total of 20 patients with major depressive disorder (MDD) and a matched group of 20 healthy individuals participated. Participants underwent multimodal magnetic resonance imaging (MRI): fMRI during a spatial memory task, and structural MRI and resting blood flow measurements of the hippocampal region using arterial spin labelling. An offline battery of neuropsychological tests, including several measures of spatial memory, was also completed. Results: The fMRI analysis showed significant group differences in bilateral anterior regions of the hippocampus. While control participants showed task-dependent differences in blood oxygen level-dependent (BOLD) signal, depressed patients did not. No group differences were detected with regard to hippocampal volume or resting blood flow. Patients showed reduced performance in several offline neuropsychological measures. All group differences were independent of differences in hippocampal volume and hippocampal blood flow. Conclusions: Functional abnormalities of the hippocampus can be observed in patients with MDD even when the volume and resting perfusion in the same region appear normal. This suggests that changes in hippocampal function can be observed independently of structural abnormalities of the hippocampus in depression

    On the Cosmological Evolution of the Luminosity Function and the Accretion Rate of Quasars

    Full text link
    We consider a class of models for the redshift evolution (between 0\lsim z \lsim 4) of the observed optical and X-ray quasar luminosity functions (LFs), with the following assumptions: (i) the mass-function of dark matter halos follows the Press-Schechter theory, (ii) the black hole (BH) mass scales linearly with the halo mass, (iii) quasars have a constant universal lifetime, and (iv) a thin accretion disk provides the optical luminosity of quasars, while the X-ray/optical flux ratio is calibrated from a sample of observed quasars. The mass accretion rate M˙\dot{M} onto quasar BHs is a free parameter of the models, that we constrain using the observed LFs. The accretion rate M˙\dot M inferred from either the optical or X-ray data under these assumptions generally decreases as a function of cosmic time from z≃4z \simeq 4 to z≃0z \simeq 0. We find that a comparable accretion rate is inferred from the X-ray and optical LF only if the X-ray/optical flux ratio decreases with BH mass. Near z≃0z\simeq 0, M˙\dot M drops to substantially sub-Eddington values at which advection-dominated accretion flows (ADAFs) exist. Such a decline of M˙\dot M, possibly followed by a transition to radiatively inefficient ADAFs, could explain both the absence of bright quasars in the local universe and the faintness of accreting BHs at the centers of nearby galaxies. We argue that a decline of the accretion rate of the quasar population is indeed expected in cosmological structure formation models.Comment: Latex, 23 pages, 9 figures, accepted for publication in Ap

    Ablative brain surgery : an overview

    Get PDF
    Background: Ablative therapies have been used for the treatment of neurological disorders for many years. They have been used both for creating therapeutic lesions within dysfunctional brain circuits and to destroy intracranial tumors and space-occupying masses. Despite the introduction of new effective drugs and neuromodulative techniques, which became more popular and subsequently caused brain ablation techniques to fall out favor, recent technological advances have led to the resurgence of lesioning with an improved safety profile. Currently, the four main ablative techniques that are used for ablative brain surgery are radiofrequency thermoablation, stereotactic radiosurgery, laser interstitial thermal therapy and magnetic resonance-guided focused ultrasound thermal ablation. Object: To review the physical principles underlying brain ablative therapies and to describe their use for neurological disorders. Methods: The literature regarding the neurosurgical applications of brain ablative therapies has been reviewed. Results: Ablative treatments have been used for several neurological disorders, including movement disorders, psychiatric disorders, chronic pain, drug-resistant epilepsy and brain tumors. Conclusions: There are several ongoing efforts to use novel ablative therapies directed towards the brain. The recent development of techniques that allow for precise targeting, accurate delivery of thermal doses and real-time visualization of induced tissue damage during the procedure have resulted in novel techniques for cerebral ablation such as magnetic resonance-guided focused ultrasound or laser interstitial thermal therapy. However, older techniques such as radiofrequency thermal ablation or stereotactic radiosurgery still have a pivotal role in the management of a variety of neurological disorders

    K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant

    Get PDF
    Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe) have been calculated for a range of epochs. With appropriate filter choices, the combined statistical and systematic K correction dispersion of the full sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the calculated K correction allows the Type Ia to be used as a cosmological probe. We use the K corrections with observations of seven SNe at redshifts 0.3 < z <0.5 to bound the possible difference between the locally measured Hubble constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal, P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at http://www-supernova.lbl.gov
    • 

    corecore