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Abstract
In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral
symmetry has been observed. On the basis of the experimental phenomenology it was suggested
that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending
energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer
vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting
spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles
can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with
experimental observations we also find that the bending energy associated with the vertices of
bilayer polyhedra can be locally reduced through the formation of pores. However, the
stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on
molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer
polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the
basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary
polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub
dodecahedron and the snub cube both have lower total bending energies than the icosahedron.

I. INTRODUCTION
The self-assembly of complex two-dimensional objects from simple constituent units plays
an important role throughout condensed matter physics, materials science, and molecular
biology. Of particular importance for biology is the self-assembly of amphiphilic molecules
into flexible bilayers [1-3] which provide the structural basis for cell membranes. The
physical properties of amphiphile bilayers are often studied using artificial bilayer vesicles
[1-4] of controlled molecular composition. In many settings [1-5] the shape of such bilayer
vesicles is characterized by a constant or smoothly varying curvature and minimizes the
elastic energy of the vesicle. In experiment as well as theory [2,4,5], characteristic sequences
of distinct vesicle shapes are obtained as a function of geometric parameters, such as the
vesicle surface area at fixed vesicle volume, and elastic parameters, such as the bilayer
spontaneous curvature. This has led to a general framework for the description and
prediction of smooth vesicle shapes [2,4] in which elasticity theory is combined with
variational and perturbative methods for energy minimization.

In recent experiments [6-10], however, faceted bilayer vesicles with shapes reminiscent of
polyhedra have been observed. Polyhedra are characterized by flat faces connected by ridges
and vertices with high local curvature, and are generally not regarded as being energetically
favorable shapes of bilayer vesicles. In these experiments, two types of oppositely charged,
single-tailed amphiphiles were used [6,7], with a slight excess of one amphiphile species
over the other. Consistent with the classic view of bilayer vesicles [1-4], the amphiphiles
were found to self-organize into spherical bilayer vesicles at high temperatures. However,
provided that the number of excess, unpaired amphiphiles was tuned to some optimal range
[6-10], cooling the system below the chain melting temperature yielded the spontaneous
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formation of polyhedral bilayer vesicles. The bilayer polyhedra were reported to be stable
over weeks and to be consistently reproduced upon thermal cycling. Furthermore, it was
suggested [6,7] that the observed polyhedral shapes had icosahedral symmetry, although
some uncertainty regarding the polyhedral symmetry remained. Finally, the vertices of
polyhedral bilayer vesicles were found to exhibit pores [6-8], which was put forward [6] as a
mechanism for avoiding the large elastic bending energy associated with closed vertices of
bilayer polyhedra.

On the basis of the experimental phenomenology it was suggested [6,7] that minimization of
elastic bending energy determines the shape of bilayer polyhedra. In a previous article [11]
we took these intriguing experimental observations as our starting point and investigated the
minimal bending energies of bilayer polyhedra. We found that, while polyhedral vesicles
can be energetically favorable compared to spherical vesicles for the bilayer composition
used in the aforementioned experiments [6-10], the snub dodecahedron and the snub cube
generally have lower elastic bending energies than the icosahedron. The purpose of the
present article is to provide a more comprehensive discussion of the bending energies of
bilayer polyhedra for various experimental scenarios and allowing for different models of
the elastic contributions to the free energy of bilayer polyhedra. Our overall aim is thereby
to provide basic estimates of the relative bending energies associated with different
polyhedral symmetries and to contrast these polyhedral bending energies with the elastic
bending energy of spherical bilayer vesicles. The disagreement between experiment and
theory concerning the most favorable polyhedral symmetry suggests that either the
mechanism governing the shape of bilayer polyhedra is not solely minimization of elastic
bending energy or the dominant shape of the faceted bilayer vesicles observed in
experiments does not correspond to the icosahedron.

To predict polyhedral shapes with minimal energy, a number of methodologies based on
computer simulations have been developed over recent years [12-16]. Here we use a
complementary method, in which we first derive general expressions for the contributions to
the elastic bending energy of bilayer polyhedra due to the ridges, closed vertices, and vertex
pores observed experimentally [6-8]. Particularly simple expressions of ridge, vertex, and
pore energies are obtained from the Helfrich-Canham-Evans free energy of bending [17-19].
We assess the validity of these phenomenological expressions, which only involve a few
parameters, by making comparisons to solutions of the two-dimensional equations of
elasticity obtained previously for the ridges and vertices of polyhedra in certain limiting
cases [20-25]. On this basis we then survey total polyhedral bending energies for a variety of
different symmetry classes of polyhedra [26-28], which are characterized by distinct values
of the geometric parameters entering our expressions of ridge, vertex, and pore energies.

The organization of this article is as follows. Section II provides a brief review of the
experimental phenomenology of bilayer polyhedra and of the contributions to their free
energy. In Sec. III we derive general expressions for the elastic bending energies associated
with ridges, closed vertices, and vertex pores from the Helfrich-Canham-Evans free energy
of bending. Comparisons to the corresponding solutions obtained previously in limiting
cases of the equations of elasticity are made in Sec. IV. Section V analyzes the elastic
bending energy associated with pores of bilayer polyhedra. In Sec. VI we calculate total
bending energies of bilayer polyhedra for various polyhedral symmetry classes. A
discussion of our results is provided in Sec. VII, and a summary and conclusions can be
found in Sec. VIII.
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II. EXPERIMENTAL PHENOMENOLOGY OF BILAYER POLYHEDRA
The bilayer polyhedra observed in experiments [6-10] were composed of two different types
of amphiphiles: myristic acid and cetyltrimethylammonium hydroxide (CTAOH). Myristic
acid carries a single negative charge while CTAOH is positively charged, and the
hydrophobic parts of both amphiphile species consist of a single hydrocarbon chain. In a
salt-free aqueous solution dilute in amphiphiles, the two amphiphile species were observed
to self-assemble into bilayers [29]. The bilayers had a thickness of approximately 4 nm, and
the interamphiphile spacing was found [6,29] to be around 0.4–0.6 nm. While above the
chain melting temperature the bending rigidity of the bilayers formed by myristic acid and
CTAOH falls within the range 1–10 kBT, cooling the system to room temperature yielded
very stiff bilayers with rigidities greater than 100 kBT [7]. In small-angle neutron scattering
experiments it was indeed found [29] that bilayers were nearly flat over a spatial length scale
of more than 1 μm.

In earlier work, a mesoscopic model [30] was used to further investigate the intriguing
mechanical properties of catanionic bilayers summarized above. In this model, electrostatic
interactions are described by a standard Ising Hamiltonian, while a spring network accounts
for the formation of hydrogen bonds between amphiphiles. The behavior of bilayers
obtained with this model is consistent with a simple picture [6,7,29] of catanionic bilayers in
which oppositely charged amphiphiles pair up to form zwitterionic amphiphiles with zero
net charge and two hydrophobic tails, thereby expelling excess amphiphiles from flat
bilayers. Due to their molecular shape, such unpaired excess amphiphiles are expected to
exhibit spontaneous curvature. It was estimated [7] from the monolayer chain length of
myristic acid that the induced spontaneous curvature of excess anionic amphiphiles is equal
to around 0.3 nm−1.

At high temperatures, mixtures of myristic acid and CTAOH were found to self-assemble
into spherical bilayer vesicles [7]. As the system is cooled below the chain melting
temperature, the behavior of these vesicles can be characterized [6-10,29] by the fraction of
the anionic amphiphile component over total amphiphile content, which we denote by rI.
Using electron and light microscopy it was found that, if rI ≠ 0.5, spherical bilayer vesicles
may facet to form polyhedral shapes or break up to form flat bilayer disks. Both of these
aggregate shapes may coexist with spherical bilayer vesicles. While the diameter of bilayer
disks was observed [29] to vary from 30 nm to 3 μm, the diameters of bilayer polyhedra
were reported [6-10] to fall within a characteristic range of 1–2 μm. Bilayer polyhedra are
estimated [6] to contain around 107 catanionic pairs and an excess of myristic acid
corresponding to around 106 single amphiphiles.

Electron and fluorescence microscopy studies have suggested [6-10] that bilayer polyhedra
exhibit pores at their vertices. By bleaching fluorescent molecules inside bilayer polyhedra
and measuring fluorescence recovery after photo-bleaching, the pore diameter was estimated
[8] to be equal to around 40 nm. However, in the same set of experiments it was also found
that some of the observed polyhedral vertices were, in fact, closed. Finally, on the basis of
electron and confocal microscopy a classification of the symmetry of bilayer polyhedra was
attempted. Some features of the observed polyhedral shapes, including their hexagonal cross
section and fivefold vertex geometry, were found to be consistent with an icosahedral
symmetry, but there was also considerable heterogeneity in the observed polyhedral shapes
[6-10].

Following Ref. [7], we distinguish between three basic types of contributions to the free
energy of bilayer polyhedra. First, there are elastic contributions to the free energy
associated with the energy required to bend amphiphile bilayers along the ridges and closed
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vertices of polyhedra, and to bend amphiphile monolayers along the edges of polyhedral
pores. For a given polyhedral symmetry and size, the total energetic cost associated with
these terms depends on the elastic parameters characterizing the bilayer and on the
geometric parameters defining the polyhedral shape. The total elastic energy of bilayer
polyhedra is to be compared with the elastic energy associated with bilayer vesicles
exhibiting a constant or smoothly varying curvature. In particular, if no constraints on the
vesicle surface area or the vesicle volume are imposed, and the bilayer composition is
homogeneous, the classic framework for the description of smooth vesicle shapes implies
[4] that spherical bilayer vesicles minimize bending energy.

A second class of contributions to the free energy of bilayer polyhedra arises from the
entropic cost of segregating excess amphiphiles along polyhedral ridges and vertices. These
entropic terms make the formation of bilayer polyhedra with defined amphiphile domains
unfavorable compared to homogeneous bilayer vesicles. However, considering the
experimental observation [7] of segregated domains of excess amphiphiles along polyhedral
ridges and vertices, entropic contributions do not seem to be dominant. Indeed, the picture of
heterogeneous bilayers presented in Refs. [6,7,29,30] suggests that excess amphiphiles are
segregated during the cooling down process, leading to the separation of amphiphile bilayers
into distinct domains which do not mix at low temperatures. Here we are not concerned with
the precise mechanism leading to the segregation of amphiphile domains and assume that
bilayers formed by myristic acid and CTAOH do indeed spontaneously expel excess
amphiphiles during the cooling down process.

Third, we need to consider electrostatic contributions to the free energy of bilayer polyhedra.
On the one hand, segregated excess amphiphiles carry charges of equal sign and, hence,
repel each other. Thus, in addition to entropic effects, the mechanism leading to amphiphile
segregation must overcome electrostatic repulsion between excess amphiphiles. On the other
hand, the finite surface charge density observed along the ridges and vertices of bilayer
polyhedra [7] induces screening clouds in the surrounding solution. Different membrane
shapes lead to different shapes of the screening clouds which, as discussed further in Sec. VI
C, can affect the energetic cost associated with polyhedral ridges and pores. However,
electrostatic contributions to the bending rigidity of amphiphile bilayers are expected
[31-34] to be of the order of 1–10 kBT and, hence, at least one order of magnitude smaller
than the experimental values [7] of the bending rigidity of bilayer polyhedra. This suggests
[30] that the electrostatic energies associated with deformations of the screening cloud are
small compared to the membrane bending energy. Thus, we follow here Ref. [7] and assume
that the shape of bilayer polyhedra is governed by minimization of elastic bending energy.

III. BENDING ENERGIES OF BILAYER POLYHEDRA
In this section we derive simple phenomenological expressions for the bending energies
associated with the ridges, closed vertices, and vertex pores of bilayer polyhedra. Our
starting point is the Helfrich-Canham-Evans free energy of bending [1-4,17-19], namely,

(1)

where Kb is the bilayer bending rigidity, R1 and R2 are the two principal radii of curvature,
and H0 is the bilayer spontaneous curvature. In situations where we consider amphiphile
monolayers instead of amphiphile bilayers, Kb in Eq. (1) is replaced by the monolayer
bending rigidity , and H0 is replaced by the monolayer spontaneous curvature .
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A. Ridge energy
Figures 1(a) and 1(b) show two models of an amphiphile bilayer bending along the ridge of
a polyhedron with dihedral angle αi. For simplicity we take R2 → ∞ in Eq. (1) for both
models. The elastic energy of ridges which do not necessarily satisfy this assumption is
discussed in Sec. IV. Moreover, we focus here on the most straightforward case of
symmetric bilayer leaflets and take H0 = 0 nm−1 in Eq. (1). The richer case in which there is
segregation of excess amphiphiles, and hence, the possibility of an inhomogeneous
composition of the membrane leaflets, is considered in Sec. III D.

Our first model in Fig. 1(a) is inspired by the electron micrographs of bilayer polyhedra in
Refs. [6-8]. We assume that, along a ridge, a bilayer bends over an angle π − αi around a
cylinder of radius R1, where the index i denotes the particular polyhedral ridge under
consideration. From Eq. (1) one then finds the ridge energy

(2)

where li is the ridge length and d = R1(π − αi) is the arc length subtended by the ridge.

Our second model, illustrated in Fig. 1(b), allows bilayers to bend sharply along ridges and
thereby provides a more faithful representation of the polyhedral geometry. We discretize
the system [35] using an interamphiphile spacing b and note that, for a curve embedded in
two-dimensional space, the bond vector connecting adjacent amphiphiles is t ̂ = (cos φ, sin
φ), where φ = φ(u) is the angle between t ̂ and the abscissa at some segment u along the
curve. Using the relation

(3)

one then obtains from Eq. (1) a simple expression of the ridge energy,

(4)

If the ridge bends “sharply,” we take

(5)

where the factor of two in the argument of the Dirac δ function arises because we assume
that the ridge in Fig. 1(b) bends over a length 2b so that a single amphiphile is located at the
tip of the ridge, thereby reducing the density in Eq. (4). The ridge energy in Eq. (3) then
becomes

(6)

Setting d = 2b, Eqs. (2) and (6) both yield
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(7)

where the rescaled bilayer bending rigidity K̄b = Kb/(2b) and the superscript (h) indicates
that this expression of the ridge energy applies to homogeneous membranes. An expression
similar [36] to Eq. (7) was used in Ref. [7] to describe the elastic bending energy associated
with polyhedral ridges. The scale of the ridge energy in Eq. (7) is set by our assumption d =
2b which, on the basis of the scattering measurements in Refs. [6,29], gives d ≈ 1 nm. The
choice d = 2b ≈ 1 nm for the arc length, and the resulting estimates of the energy density,
are confirmed in Sec. IV by comparing Eq. (7) to an expression of the ridge energy which
allows for both principal radii of curvature to be finite.

B. Vertex energy
A phenomenological but straightforward expression for the elastic bending energy
associated with closed bilayer vertices is obtained following similar steps as in Sec. III A.
As indicated in Fig. 2, one can regard vertices as points at which the bond vectors parallel to
ridges change direction to become parallel to neighboring ridges, which is complementary to
the model of ridges illustrated in Fig. 1(b). We decompose the total vertex energy Gv into a
sum of q terms  with j = 1, …,q, where q denotes the number of ridges meeting at a
vertex. Retracing the steps leading to the ridge energy in Eq. (7) one finds

(8)

where βj denotes the face angle subtended at a given vertex by two neighboring ridges, and,
similarly as in Sec. III A, we took the ridge length across a vertex to be equal to 2b and set

(9)

The total vertex energy is then given by

(10)

where the superscript (h) again indicates that this expression applies to homogeneous
membranes.

C. Pore energy
Calculations of the elastic bending energy associated with toroidal pores in planar bilayers
can be found in Refs. [7,8,37], and a generalization to arbitrary pore shapes is provided in
Ref. [38]. Based on this previous work, we devised two complementary models of vertex
pores. Our first model [see Fig. 3(a)] is again inspired by the experimental images in Refs.
[6-8], which suggest that the vertices of bilayer polyhedra locally resemble cones.
Accordingly, we approximate the vertex of a given polyhedron by a cone with apex angle π
− 2θ, where θ = π/2 − arccos(1 − Ω/2π) for a solid angle Ω subtended by the polyhedron
vertex. We then use the Helfrich-Canham-Evans free energy of bending in Eq. (1) with the
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monolayer bending rigidity and spontaneous curvature to calculate the bending energy of a
pore around the tip of a cone, leading to an approximate expression for the bending energy
of polyhedral pores.

From Fig. 3(a) we read off the principal radii of curvature, R1 and R2, and the area element,
dS, of a conical pore with semicircular cross section:

(11)

(12)

(13)

for 0 ≤ ω ≤ π/2 and −π/2 ≤ ω ≤ 0, respectively, where m denotes the monolayer thickness, h
the thickness of the amphiphile headgroup, and r is the pore radius. Note from Fig. 3(a) that
only pore radii r ≥ rm, where rm = m(1 − cos θ) is defined as the value of r for which the
separation between opposite sides of the pore is equal to zero, have physical significance.
For bilayer polyhedra, we have [7] the representative values m ≈ 2 nm and h ≈ 0.5 nm.

Following the steps outlined in Appendix A, one finds that Eqs. (11)–(13) together with Eq.
(1), give

(14)

where we have defined

(15)

and

(16)

(17)

The superscript (c) in Eq. (14) indicates that this expression of the pore energy applies to
conical pores. For θ = 0, the above result for the bending energy of a conical pore reduces to
the corresponding expression obtained previously for planar bilayers [7,8,37].

Our second model of vertex pores [see Fig. 3(b)] allows for a more faithful representation of
the polyhedral geometry. We assume that, along each face, the vertex pore consists of a
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straight edge with a semicircular cross section [see Fig. 3(b), left panel], which bends
through an angle γj across a ridge from one face to a neighboring face [see Fig. 3(b), right
panel]. Accordingly, we split the energy cost associated with such a polygonal pore into a

term  corresponding to the elastic bending energy of a straight edge along a polyhedral

face, and a term  corresponding to the energy cost of bending the edge of the pore from
one face to a neighboring face. For a straight edge of length sj, the version of Eq. (1)
appropriate for a monolayer gives

(18)

where from Fig. 3(b) we have that .

The contribution  stems from bending the pore about the vertical axis in the left panel of
Fig. 3(b) by some angle γj. According to the right panel of Fig. 3(b) we have

(19)

Retracing the steps which led to the ridge energy in Eq. (7), but now for the horizontal
amphiphile component as indicated in the left panel of Fig. 3(b), one finds

(20)

where the rescaled monolayer bending rigidity  and the dimensionless

spontaneous curvature . The total pore energy is then given by

(21)

where the superscript (p) signifies that Eq. (21) applies to polygonal pores. Our expressions
of conical and polygonal pore energies in Eqs. (14) and (21) are discussed further in Sec. V.

D. Segregation of excess amphiphiles
The experimental phenomenology of polyhedral bilayer vesicles suggests [6,7] that the two
amphiphile species constituting bilayer polyhedra pair up to form flat bilayers and thereby
expel excess (unpaired) amphiphiles from polyhedral faces. As already noted in Sec. II,
segregated excess amphiphiles exhibit a spontaneous curvature  [7], thus
favoring a curved membrane shape. It has indeed been observed [6-8] that excess
amphiphiles seed pores into bilayers and localize along the ridges of bilayer polyhedra. As
far as the effect of excess amphiphiles on pore energies is concerned, we therefore follow
Ref. [7] and assume that vertex pores are composed of excess amphiphiles, leading to a
finite value of  in Eqs. (14) and (21) if sufficiently many excess amphiphiles are present.
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How does segregation of excess amphiphiles modify the ridge energy in Eq. (7) and the
vertex energy in Eq. (10)? To address this question, we consider a particularly favorable
scenario for the formation of polyhedral ridges and vertices in heterogeneous bilayers and
thereby obtain a lower bound on the elastic energies associated with ridges and pores in the
presence of molecular segregation. Assuming perfect segregation, excess amphiphiles are
concentrated along the outer membrane leaflets along ridges and closed vertices so as to
induce an anisotropic spontaneous curvature commensurate with the dihedral and vertex
angles associated with a given polyhedral geometry. As illustrated in Fig. 4 for a ridge with
dihedral angle αi, this leaves us with the inner membrane leaflet which, in the absence of
some additional amphiphile species with “inverted-wedge shape” [1-3], must be bent in
order to cover the hydrophobic tails of the excess amphiphiles localized in the outer
membrane leaflet along ridges and closed bilayer vertices.

For perfectly segregated ridges and vertices, we describe the bending of the inner membrane
leaflet in a similar way as in the case of the bilayer ridges and vertices considered in Secs.
III A and III B, but with the neutral plane of bending shifted from the midplane of the
bilayer to the amphiphile head-tail interface of the inner amphiphile leaflet (see Fig. 4).
Thus, following analogous steps as in Secs. III A and III B, we obtain the modified ridge
and vertex energies

(22)

(23)

where the superscript (s) indicates that in these expressions we assume perfect segregation
of excess amphiphiles. Thus, provided that the optimal amount of excess amphiphiles is
present [6,7], the ridge and vertex energies are lowered by a factor . Experiments
[6,7] and simulations [30] suggest that . Since the segregation of excess
amphiphiles, and their fit to dihedral and vertex angles, will generally be less than perfect,
we regard the simple phenomenological expressions in Eqs. (22) and (23) as lower bounds
on the ridge and vertex energies in heterogeneous bilayers.

The heuristic picture of amphiphile segregation developed above allows us to estimate the
amount of excess amphiphiles present for a given polyhedral shape and size. In particular,
we define the fraction of anionic amphiphile content, which is the amphiphile species in
excess for bilayer polyhedra [6-10], over total amphiphile content as

(24)

where NR denotes the total number of excess amphiphiles segregated along ridges, NP
denotes the total number of excess amphiphiles segregated at vertex pores, NT denotes the
total number of amphiphiles contained in the polyhedron shell, and, consistent with the
estimates in Sec. II, we have taken NR + NP ⪡ NT. In agreement with typical experimental
observations [6-8], Eq. (24) assumes that bilayer polyhedra exhibit pores at their vertices.
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In order to estimate NR we need to determine how many excess amphiphiles must be
segregated at a given polyhedral ridge so that the bilayer is bent by an appropriate dihedral
angle. Assuming perfect segregation of excess amphiphiles in the outer leaflet, we estimate

that  excess amphiphiles must be segregated per interamphiphile spacing
along the ridge in order to induce an angle π − αi in the outer membrane leaflet. Thus,

(25)

where the sum is to be taken over all the ridges of a given polyhedral shape.

A particularly simple estimate of NP is obtained by assuming that pores have a (flat) toroidal
shape and radius r, which gives a pore surface area of 2π2m(m + r) nm2. One therefore finds
that

(26)

where V denotes the number of vertices of a given polyhedral shape and b2 is the surface
area per amphiphile. Similarly, a rough estimate of the total number of amphiphiles
contained in the polyhedron shell is given by

(27)

in which we have implicitly defined [21] the polyhedron radius Rp so that the polyhedron

area is equal to  for a given edge length and polyhedral symmetry. Combining Eqs.
(25)–(27) we can evaluate the ideal value of rI in Eq. (24) obtained from our simple
description of amphiphile segregation and make comparisons to the corresponding
experimental estimates, a point to which we return in Sec. VI.

IV. ASYMPTOTIC EXPRESSIONS OF VERTEX AND RIDGE ENERGIES
The solution of the two-dimensional equations of elasticity [39] is a formidable challenge,
and has only been achieved for the ridges and vertices of polyhedra in certain limiting cases
[20-25] corresponding to a diverging Föppl-von Kármán number. The Föppl-von Kármán
number is a dimensionless quantity characterizing the competition between bending and
stretching deformations and, for spherical shells, is defined as [21]

(28)

where Y is the two-dimensional Young’s modulus. In the following we use the available
asymptotic solutions of the equations of elasticity for polyhedral ridges and vertices to
assess the validity of the phenomenological expressions of ridge and vertex energies
obtained in Secs. III A and III B.
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A. Vertex energy
In a series of papers [20-22,40,41], the energetic cost of introducing fivefold disclinations in
hexagonal lattices has been investigated. It was found [20] that for a flat, circular sheet of
radius R, the stretching energy diverges linearly with the area of the sheet: E(R) = A0Y R2,
where A0 is a constant. However, if the sheet is allowed to buckle out of the plane, it is, for
large enough system sizes, energetically favorable to form a cone with a central region
which is “flattened out,” thus avoiding the curvature singularity at the tip of the cone. The
bending energy associated with the cone section is found to be E(R) = B0Kb log(R/Rb),
where B0 is a constant and Rb is the buckling radius at which it becomes energetically
favorable for the lattice to bend out of the plane.

The above results have been used to estimate [21,22] the elastic energy of icosahedral
vertices by noting that spherical shells can be discretized using an icosadeltahedral
triangulation, which consists of a hexagonal lattice exhibiting 12 fivefold disclinations.
Regarding the 12 disclination sites as independent, the vertex energy of icosadeltahedral
triangulations of the sphere is found to be given by

(29)

for each disclination [21,22], where  is the critical Föppl-von Kármán number
for buckling to occur, we have neglected constant contributions due to the spherical
background curvature, and the parameter A0 has been eliminated by energy minimization
with respect to Rb. Good fits [21,22] to the results of simulations are obtained with B0 ≈
1.30 and Γb ≈ 130.

The energy in Eq. (29) corresponds, for large enough Γ, to the elastic energy associated with
the vertex of the icosahedron and can, in this limit, be compared to the more general but
heuristic vertex energy in Eq. (10) with values of the geometric parameters appropriate for
icosahedral vertices. To this end, we note that the lowest energy states of icosadeltahedral
triangulations of the sphere are found to resemble icosahedra for  [21,22], which
corresponds to a vertex energy greater than 8Kb with, for instance, a value 12Kb for Γ =
1010. As shown in Table I, this estimate compares quite favorably with the value Gv ≈ 11Kb
implied by Eq. (10) for the icosahedron. In the estimates obtained from Eq. (29), the
contribution due to stretching, which is not considered in Eq. (10), is approximately equal to
0.65Kb. Thus, the energetic cost associated with bending deformations is seen to dominate
over the energetic cost associated with stretching deformations in this regime of Γ. For
comparison, we note that for bilayer polyhedra it has been estimated [7] that Γ ≈ 106, which,
according to Eq. (29), would leave us with a vertex energy of approximately 6.5Kb.

Note from Table I that the bending energies associated with (closed) conical and polygonal
pores take similar values for all Platonic solids, with the competition between pores and
closed, homogeneous bilayer vertices governed by the ratio . Using the estimate

 suggested by experiments [6,7] and simulations [30], we find that closed
bilayer vertices will be unstable to the formation of pores for homogeneous amphiphile
bilayers. However, Table I also implies that the vertex energy obtained for perfectly
segregated bilayers is comparable to the bending energy associated with pores, suggesting
that, if the optimal amount of excess amphiphiles is present at polyhedral vertices, closed
bilayer vertices may be metastable.
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B. Ridge energy
According to computer simulations [21,22], the total energy of icosadeltahedral
triangulations of the sphere is dominated by vertex energies for , and only in the
regime of very large Γ, where the overall shape becomes increasingly icosahedral, do the
contributions of ridges to the overall elastic energy become significant. It was shown by
Lobkovsky and Witten [21-24] that, for Γ → ∞, the ridge energy is given by

(30)

Allowing the broad ranges  and  for
bilayer polyhedra [42], this implies

(31)

which should be compared to Eq. (7). The ridge energies in Eqs. (7) and (31) yield similar
results for a unit ridge length, thus confirming the assumption d = 2b made in Sec. III A.
However, the estimate of the ridge energy due to Lobkovsky and Witten has a stronger
dependence on the dihedral angle, but increases more slowly with Rp. In addition to the
ridge energy in Eq. (7), we therefore also consider Eq. (31) when calculating the total elastic
energy of bilayer polyhedra in Sec. VI.

V. ANALYSIS OF PORE ENERGIES
In Sec. III C we obtained Eqs. (14) and (21) as the elastic bending energies associated with
conical and polygonal pores. The purpose of the present section is to discuss how these pore
energies vary with the elastic and geometric parameters characterizing polyhedral bilayer
vesicles.

A. Conical pores
Figures 5(a) and 5(b) show plots of the conical pore energy in Eq. (14) as a function of the
pore radius for θ = 0 and θ = 0.4π, respectively. The angle θ = 0 corresponds to a flat
bilayer, while θ = 0.4π roughly corresponds to the vertex geometry of the tetrahedron. A

notable feature of the curves in Fig. 5 is that  exhibits a minimum as a function of r. This
optimal pore radius arises due to the competition between the standard edge tension of a
straight bilayer edge [2] acting along the rim of the pore, which leads to an energy cost
increasing linearly with r, and the bending energy associated with closing the pore, which is
expected to be large for small pore radii. We can see this more clearly by returning to the
Helfrich-Canham-Evans free energy of bending in Eq. (1). For simplicity we set

, in which case the “rim contribution” corresponds to the integral over 1/R1 and
is given by

(32)
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with ξ ∝ r, where the principal radii of curvature R1 and R2 are defined in Eqs. (11) and
(12), respectively. Similarly, the “loop contribution” is associated with the integral over 1/R2
and evaluates to

(33)

Neglecting terms which are constant in r, the sum of  and  is equal to  in Eq. (14) for
.

Figure 5(a) shows that, in the case θ = 0, the rim and pore contributions to  do indeed
behave as expected, with  increasing linearly with the pore circumference 2πr, and 
decreasing with increasing r. The sum of  and  exhibits a minimum as a function of r. As
illustrated in Fig. 5(b), these characteristic features persist for θ > 0, with the small r regime
( ) dominated by the nonlinear behavior of the loop contribution to the bending
energy, and the large r regime ( ) dominated by the linear behavior of the rim
contribution. Considering that the optimal pore radius typically found from Eq. (14) is of the
order of 1 nm, which is close to the smallest length scales down to which a description of
bilayer pores in terms of continuum elasticity theory can be expected to apply [43], it is
questionable [44] whether the optimal pore radius exhibited by conical pores is of physical
significance.

Figure 6 compares the pore energies obtained with θ = 0 and θ > 0 for a number of different
values of . For the range of spontaneous curvatures considered [7], the pore energy is
seen to decrease with increasing monolayer spontaneous curvature. However, for values of
the spontaneous curvature much larger ( ) than those in Fig. 6, the rim
curvature no longer suffices to relax the spontaneous curvature and the pore energy rises
again with increasing . Moreover, from Figs. 5 and 6 we observe the general trend that
the conical pore energy is increased relative to the pore energy of a planar bilayer, by up to
approximately  for the parameter values used in Figs. 5 and 6, with a larger increase in
the pore energy corresponding to a smaller apex angle.

What is the physical origin of the increase in  for θ > 0? Comparing panels (a) and (b) in
Figs. 5 and 6 we note that the fractional difference between the pore energies for θ > 0 and θ
= 0 is large for small pore radii, but decreases as the pore radius increases. Indeed, the ratio

 approaches one as r tends to infinity. In order to understand this
behavior on a qualitative level, note that rm = 0 for θ = 0, but rm > 0 for θ > 0. In the latter
case, if r = rm, the inner sections of the pore “almost” touch, and the loop contribution to the
bending energy is large. For θ = 0, however, there is still a pore of finite diameter at r = rm,
leading to a correspondingly smaller loop contribution to the bending energy. As r becomes

large,  and  are both increasingly dominated by the rim contribution to
the bending energy, and, thus, their ratio as a function of the pore radius approaches one.

Finally, we use our expression of the pore energy in Eq. (14) to evaluate the edge tension, λ,
associated with a conical pore:

Haselwandter and Phillips Page 13

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(34)

Figure 7 shows plots of the edge tension in Eq. (34) as a function of the pore radius and
compares the calculated estimates to representative values of λ measured in experiments [2].
Experimental estimates of the edge tension typically rely [2] on measurement of the
maximum disk size formed by lipid bilayers, or on measurement of the pore radius in
bilayers under tension. Our theoretical estimates of the edge tension vary depending on the
choice for the numerical values of  and , but are found to be in broad agreement with
experimental measurements. A notable discrepancy between theoretical and experimental
results is that the edge tension in Eq. (34) depends on r and can even become negative due to
the nonmonotonic behavior of the calculated pore energy, while experiments typically report
a single (positive) value of the edge tension. This value could be viewed as the asymptotic
edge tension obtained in the limit of large r, where the pore energy increases linearly with r
and the edge tension is therefore constant. Moreover, we find that the edge tension varies
only little with θ [see Figs. 7(a) and 7(c)]. This suggests that a nonzero θ has the primary
effect of shifting up the curve for the pore energy, and only marginally distorts the variation

of  with r, which is also apparent from Figs. 5 and 6. However, changing the (relative)
values of m and h does have a pronounced effect on the numerical values of the pore energy
as well as on the edge tension [see Figs. 7(a) and 7(d)].

B. Polygonal pores

Figure 8 shows plots of the polygonal pore energy  in Eq. (21) as a function of the pore
radius r for the vertex geometry of the icosahedron. A notable discrepancy between the

polygonal pore energy and the conical pore energy in Eq. (14) is that  always increases
linearly with r and, hence, does not lead to an optimal pore radius for which the bending
energy takes a minimal value. However, Eq. (21) gives a similar range of the pore energy as
the corresponding expression for the bending energy of a conical pore. In particular, the

asymptotic value of the ratio  is equal to the ratio of the pore circumferences in the
two models, as indicated in the inset of Fig. 8. Finally, we note from Fig. 8 and Eqs. (18)

and (20) that for small pore radii  nm the contribution  to the polygonal pore

energy dominates over the contribution , and vice versa. As a result, for the parameter
values in Fig. 8, the polygonal pore energy increases with increasing spontaneous curvature
for small pore radii, but decreases with increasing spontaneous curvature for large pore radii.

VI. POLYHEDRAL BENDING ENERGIES
In this section we evaluate the total bending energies of bilayer polyhedra as a function of
the polyhedron radius Rp. As in Secs. III and IV, the polyhedron radius is defined [21]

through , where A is the polyhedron area, which is, in turn, proportional to the
polyhedron ridge length with a proportionality constant characteristic of the polyhedral
geometry. The total bending energies associated with different polyhedral shapes are
compared for a fixed area rather than a fixed volume since, as discussed from a theoretical
perspective in Sec. IV A and also observed in experiments [6-8], closed bilayer vertices are
expected to break up to form pores, thus allowing adjustment of the polyhedron volume for
a given number of amphiphiles or fixed surface area. Following Secs. III and IV, polyhedral
bending energies involve contributions due to ridges and vertices. The vertex part of the
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polyhedron bending energy is independent of the polyhedron size and will generally favor
bilayer polyhedra which only involve a few vertices. The ridge part of the polyhedron
bending energy, however, increases with the polyhedron ridge length and, hence, with the
polyhedron radius.

Since ridges impose an energetic cost one expects that, for a fixed area and dihedral angle,
the faces of bilayer polyhedra relax to form regular polygons. While there are infinitely
many regular convex polygons, there are only five regular convex polyhedra—the Platonic
solids, which are vertex-transitive, edge-transitive, and face-transitive [26-28]. Thus, all
vertices, ridges, and faces of any given Platonic solid share the same geometric properties
relating, for instance, to the values of face and dihedral angles. A natural generalization of
the Platonic solids are the semiregular polyhedra, which are vertex-transitive and have
regular (but not necessarily congruent) polygons as faces. Apart from the Platonic solids, the
semiregular convex polyhedra encompass the 13 Archimedean solids and the two (infinitely
large) families of prisms and antiprisms. Relaxing the constraint of vertex transitivity, one
obtains the class of convex polyhedra with regular polygons as faces. In addition to the
Platonic solids, Archimedean solids, prisms, and antiprisms, this class includes the 92
Johnson solids. It has been shown [45,46] that this list exhausts all convex polyhedra with
regular faces.

Thus, counting prisms and antiprisms as one solid each, there are exactly 112 convex
polyhedra with regular polygons as faces, and we focus here on this set of polyhedra. As
representative examples of convex polyhedra with nonregular polygons as faces we,
however, also consider the bending energies of the Catalan solids, which are the duals of the
Archimedean solids and, as such, are also highly symmetric. Figure 9 shows examples of
polyhedra belonging to the different symmetry classes [26-28,47] we are concerned with
here. In particular, Sec. VI A presents results pertaining to the bending energies of
homogeneous bilayer polyhedra, and Sec. VI B focuses on the bending energies of bilayer
polyhedra exhibiting segregation of excess amphiphiles. Finally, Sec. VI C discusses to what
extent our results regarding the minimal bending energies of bilayer polyhedra can be
expected to be valid for ridge, vertex, and pore energies which deviate from the elastic
models developed in Secs. III and IV.

A. Homogeneous polyhedra
Figure 10 shows the bending energies of the convex polyhedra with regular faces as a
function of the polyhedron radius Rp. To begin, consider homogeneous polyhedra with
closed bilayer vertices [see Fig. 10(a)]. We calculate the relevant bending energies using the
expression  in Eq. (7) for the ridge energy and  in Eq. (10) for the vertex energy,
together with the geometric parameters characterizing the convex polyhedra with regular
polygons as faces [26-28,47]. From Fig. 10(a) one finds that spherical bilayer vesicles have
a lower bending energy than any of the polyhedral symmetries considered. Moreover, in
agreement with a previous study [7], we find that the icosahedron [see Fig. 9(a)] minimizes
bending energy among the Platonic solids. However, as shown in Fig. 10(a), the icosahedron
does not minimize bending energy if one allows for more general polyhedral symmetries.

As noted above, closed bilayer vertices may break up to form (closed) pores, and the
relevant energy curves are displayed in Fig. 10(b). These curves are again obtained with the
ridge energy  in Eq. (7), but now this expression is combined with the polygonal pore

energy  in Eq. (21) for r = 0. Although the details of the results in Fig. 10(b) are
quantitatively different from those in Fig. 10(a), we again find that in general the sphere is
energetically favorable over the convex polyhedra with regular faces, and that the
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icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes.
Increasing the pore radius does not change these conclusions.

In Figs. 10(c) and 10(d) we plot polyhedral bending energy as a function of Rp using the

ridge energy  in Eq. (31) and the pore energy  in Eq. (21) with r = 0. As mentioned

above, simulations suggest [21,22] that, at least for the icosahedron,  gives a good
description of the ridge energy for . Using the somewhat less stringent criterion Γ >
106, this then implies  nm for the upper bound Y/Kb = 10 nm−2 [see Fig. 10(c)]. We
also find with this modified expression of the ridge energy that spherical bilayer vesicles
have lower bending energy than any polyhedral shape considered, and that the icosahedron
does not represent the polyhedral shape with minimal bending energy. Applying the lower
bound Y/Kb = 10−3 nm−2 has the effect of shifting the curves for the ridge energy to larger
polyhedron radii, and does not modify these conclusions. The corresponding results are
shown in Fig. 10(d).

What is the polyhedral shape that minimizes the elastic bending energy among the convex
polyhedra with regular faces? As apparent from Fig. 10, the answer to this question will
generally depend on the polyhedron size and the particular expression of the polyhedron
energy considered. Indeed, in the limit Rp → ∞ the icosahedron only represents the 34th-
lowest energy shape for the ridge energy  in Eq. (7), but the 3rd-lowest energy shape for

 in Eq. (31). However, for large enough polyhedron sizes, the snub dodecahedron [see
Fig. 9(b)] minimizes polyhedral bending energy for all ridge energies considered in Fig. 10.
Moreover, independently of the particular expression of the polyhedral bending energy used,
the snub cube [see Fig. 9(c)] also has a lower elastic bending energy than the icosahedron in
this limit. For the scenarios considered in panels (a), (b), and (c) of Fig. 10, this asymptotic
behavior already manifests itself for the typical polyhedron size Rp ≈ 500 nm observed in
experiments [6-10], while the lower bound Y/Kb = 10−3 nm−2 in Fig. 10(d) only applies to
polyhedron sizes much larger than the observed size of bilayer polyhedra.

In Fig. 11 we compare the total ridge energies of the 13 Catalan solids to the total ridge
energy of the icosahedron as a function of the polyhedron radius. Panel (a) of Fig. 11 is
obtained using the ridge energy  in Eq. (7), whereas panel (b) corresponds to the ridge
energy  in Eq. (31) with the upper or, analogously, the lower bound on Y/Kb.
Comparison of Fig. 11 with the large-Rp regime in Fig. 10 shows that, as already anticipated
on intuitive grounds, the total ridge energies of the Catalan solids are indeed much larger
than those of the convex polyhedra with regular polygons as faces.

B. Heterogeneous polyhedra
Perhaps the most basic result of the above analysis of the elastic bending energies of
homogeneous bilayer vesicles is that, independently of the particular expression of the
polyhedral bending energy considered, spherical bilayer vesicles allow (much) lower
bending energies than bilayer polyhedra. However, according to the experimental
observations in Refs. [6-8], pores are seeded into bilayers via molecular segregation if there
is a slight excess of one amphiphile species over the other. Thus, pores can have a role
beyond reducing the elastic bending energy associated with the vertices of bilayer
polyhedra. How do the total bending energies of bilayer polyhedra compare to the bending
energies of spherical bilayer vesicles having an equal (or greater) number of pores? This
question is addressed most conveniently by eliminating the vertex energies altogether and
only comparing polyhedral ridge energies to the total elastic energy associated with
spherical bilayer vesicles.
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Allowing molecular segregation at pores only, and setting the pore radius equal to zero, we
again find that the sphere is energetically favorable over any polyhedral shape for physically
relevant values of the polyhedron radius [see Figs. 12(a) and 12(b)]. This conclusion holds
for the ridge energy  in Eq. (7) [see Fig. 12(a)] as well as for the ridge energy  in
Eq. (31) [see Fig. 12(b)]. Furthermore, Figs. 12(a) and 12(b) imply that, even if there is no
energetic cost associated with the vertices of polyhedral bilayer vesicles, spherical bilayer
vesicles are still energetically favorable. The latter point is particularly relevant considering
that, in analogy to pores forming in planar membranes [38], the conical and polygonal pore
geometries we have considered here may not represent general minima of polyhedral pore
energies.

Figures 12(c) and 12(d) and Figs. 12(e) and 12(f) show the bending energies of bilayer
polyhedra with molecular segregation at pores of radius r = 20 nm and r = 40 nm,
respectively, using the ridge energies  in Eq. (7) and  in Eq. (31). The plots in Figs.
12(c) and 12(d) thereby correspond to the typical polyhedra (Rp ≈ 500 nm) and pore (r ≈ 20
nm) sizes reported in Refs. [6-10]. We note that the polyhedral ridge length decreases with
increasing r, leading to a reduction in the polyhedral ridge energy. Hence, we expect that the
total polyhedral ridge energy decreases with increasing r and, indeed, approaches zero as 2r
approaches the ridge length. This is borne out by the results in Fig. 12. However, the results
in Fig. 12 also suggest that, for bilayer polyhedra which only exhibit molecular segregation
at vertices, the regime for which polyhedral bending energies are smaller than the bending
energy of the sphere is, at best, very narrow. Thus, molecular segregation of excess
amphiphiles at polyhedral vertices is not expected to be sufficient to stabilize polyhedral
bilayer vesicles over spherical bilayer vesicles, even in the somewhat artificial limit of
molecular segregation at pores which are very large in relation to the total polyhedron size.

Figure 13 shows the elastic bending energies of the convex polyhedra with regular faces
obtained with the ridge energy  in Eq. (22) for perfect molecular segregation along
ridges. First, consider the case in which there is molecular segregation at ridges, but not at

pores [see Fig. 13(a)]. Using the pore energy  in Eq. (21) with r = 0, we find a
pronounced regime for which polyhedral bilayer vesicles are energetically favorable over
spherical bilayer vesicles ( ). For small Rp there is a narrow regime for which the
icosahedron is the polyhedral shape with minimal bending energy, while there are more
prominent regimes at larger polyhedron sizes for which the snub cube and the snub
dodecahedron are the polyhedral shapes minimizing bending energy. Thus, molecular
segregation along ridges is found to be crucial for the stabilization of polyhedral bilayer
vesicles over spherical bilayer vesicles.

Allowing molecular segregation at pores as well as ridges, one obtains [48] the total
polyhedral bending energies shown in Figs. 13(b)–13(f). We find a pronounced regime

 nm for which polyhedral bilayer vesicles are energetically favorable compared to
spherical bilayer vesicles if the same number of pores is seeded into all vesicles. The
polyhedral shape which generally minimizes elastic bending energy for the typical
polyhedron size Rp ≈ 500 nm and pore size r ≈ 20 nm observed in experiments [6-10] is the
snub dodecahedron. Moreover, for large pore radii a sequence of polyhedral shapes with
minimal bending energy is obtained as a function of pore radius. The most notable of these
polyhedral shapes is the great rhombicosidodecahedron [see Fig. 9(d)], which surpasses the
snub dodecahedron in bending energy at Rp ≈ 300 nm [Fig. 13(e)] or at Rp ≈ 600 nm [Fig.
13(f)].

As discussed in Sec. III D, the model ≈ of perfect molecular segregation used for Figs. 12
and 13 allows us to obtain a phenomenological estimate of the optimal amount of excess
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amphiphiles for a given polyhedral shape and size. Figure 14 shows plots of the ratio of the
amphiphile species in excess to the total amphiphile content as a function of the polyhedron
radius Rp for the convex polyhedra with regular polygons as faces. For the typical
polyhedron radius Rp ≈ 500 nm and pore radius r ≈ 20 nm observed in experiments [6-10]
we find rI ≈ 0.51 as the optimal imbalance in the concentrations of the two amphiphile
species. The corresponding experimental estimate is rI ≈ 0.57 [6,7]. We expect that in
experiments not all excess amphiphiles are segregated along the ridges and vertices of
polyhedra as a result of, for instance, entropic mixing within bilayer polyhedra or the
formation of micelles [7]. Thus, our theoretical estimate of rI is in reasonable accord with
the experimental results given the level of approximation involved in making such estimates.

C. Generalized ridge energy
In Secs. VI A and VI B we found that, for large enough polyhedron sizes, the snub
dodecahedron minimizes bending energy among the convex polyhedra with regular
polygons as faces. This result was obtained with the heuristic expressions of the ridge
energy in Eqs. (7) and (22), and also with the limiting expression of the ridge energy in Eq.
(31). Does this conclusion regarding the polyhedral shape with minimal bending energy also
hold for more general expressions of the ridge energy? To address this question, consider
ridge energies of the form

(35)

with p = 2 and q = 1 corresponding to Eqs. (7) and (22), and p = 7/3 and q = 1/3
corresponding to Eq. (31). As before, we seek the minimum energy shape among the convex
polyhedra with regular faces, but now as a function of p and q. Numerically one finds that, if
q is chosen small ( ) or large ( ) enough, one can have  with the snub
dodecahedron no longer being the minimum energy shape.

What physical scenarios could lead to a ridge energy with values of p and q so that the snub
dodecahedron does not correspond to the most favorable polyhedral shape? As discussed in
Secs. III and IV, the available expressions of the ridge energy obtained from elasticity
theory firmly lie within the regime for which the snub dodecahedron minimizes elastic
bending energy for large polyhedron sizes. However, segregation of excess amphiphiles
implies that bilayer polyhedra are locally charged. Hence, electrostatic interactions could, in
principle, affect the symmetry of bilayer polyhedra [6,7] and modify the ridge energy
[49-51]. In Appendix B we provide a simple example of how electrostatic interactions could
lead to an expression of the ridge energy which is qualitatively different from the elastic
ridge energies considered in Secs. III and IV, resulting in a polyhedron other than the snub
dodecahedron as the energetically most favorable polyhedral shape for large vesicle sizes.

VII. DISCUSSION
In agreement with expectations based on the classic framework for describing and predicting
vesicle shape [1-4], our calculations imply that vesicles with smooth curvature are favorable
over polyhedral vesicles for bilayers of uniform composition. However, allowing for
molecular segregation of excess amphiphiles with high spontaneous curvature we find,
consistent with the experimental phenomenology of bilayer polyhedra [6-10], that
polyhedral bilayer vesicles can have lower elastic bending energies than spherical bilayer
vesicles. Furthermore, on the basis of our calculations we expect bilayer vertices to be
unstable to the formation of (closed) pores. Again, this result is in agreement with
experimental observations [6-8] and suggests that bilayer polyhedra are permeable.
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According to our theoretical analysis, the mechanism lowering the bending energies of
certain polyhedral bilayer vesicles below the bending energy of spherical bilayer vesicles is
segregation of excess amphiphiles along the ridges of bilayer polyhedra as observed in Ref.
[7]. Segregation at pores, which was originally suggested in Ref. [6] as a potential
mechanism stabilizing polyhedral vesicle shapes, is not sufficient to produce polyhedra with
bending energies which are favorable compared to the sphere for the typical size of bilayer
polyhedra observed in experiments [6-10]. Moreover, independent of the particular
expressions of ridge, vertex, and pore energies used, we find that the icosahedron does not
minimize bending energy among arbitrary polyhedral shapes and sizes. In fact, for large
enough polyhedron sizes, the snub dodecahedron is the polyhedral shape minimizing
bending energy among the convex polyhedra with regular faces, and the snub cube also has
a lower bending energy than the icosahedron in this limit. This result can be understood on a
qualitative level as arising from a trade-off between reduction of the total ridge energy via a
decrease in the total ridge length, and an accompanying decrease in the dihedral angles
associated with ridges, which in turn leads to an increase in the density of the ridge energy.

What sets the characteristic range of polyhedron sizes observed in experiments [6-10]? As
noted above, molecular segregation along ridges is crucial for the stabilization of bilayer
polyhedra. For molecular segregation to significantly lower the elastic bending energy of
bilayer polyhedra, there must be a sufficient number of excess amphiphiles to line
polyhedral ridges [52]. However, while the polyhedral ridge length increases linearly with
the polyhedron radius Rp, the number of excess amphiphiles increases quadratically with Rp.
In contrast, the bending energy of spherical bilayer vesicles is, to a first approximation,
independent of Rp. Thus, we speculate that the characteristic range of polyhedron sizes
observed in experiments roughly corresponds to the maximum polyhedron size which still
gives a lower total bending energy than the sphere. Following this simple heuristic
argument, one obtains from Fig. 13 the characteristic polyhedron size Rp ≈ 400–600 nm,
which lies at the lower end of the range of polyhedron sizes reported in Refs. [6-10].

Our comparisons between the total elastic bending energies of polyhedral and spherical
bilayer vesicles relied crucially on the ridge energies in Eqs. (7), (22), and (31), respectively.
The first two of these expressions involve the parameter d corresponding to the arc length
suspended by a ridge. We fixed this parameter, and an analogous parameter appearing in the
vertex energy in Eq. (10), by assuming that ridges bend over a spatial scale corresponding to
only two interamphiphile spacings. Such molecularly sharp ridges are consistent with a
polyhedral vesicle shape. Also, with this choice of d, Eqs. (7) and (22) are in broad
agreement with the ridge energy in Eq. (31) obtained [21-24] for a diverging Föppl-von
Kármán number. However, one might question the validity of the Helfrich-Canham-Evans
free energy of bending for ridge and vertex geometries exhibiting large local curvature.
Atomistic simulations [30,43,53] would potentially allow the systematic investigation of the
limitations of the simple continuum models of polyhedral ridges and vertices used here.

A more gradual bending of the amphiphile bilayer along ridges than assumed in Eqs. (7),
(22), and (31) would reduce the density of ridge energies. This, in turn, could potentially
stabilize faceted vesicles for polyhedron sizes larger than the maximum polyhedron radii
implied by our analysis. Experimental results obtained on the basis of electron and light
microscopy indeed suggest [6-10] that larger sizes of faceted vesicles may be stable and that
these vesicles exhibit ridges and vertices which bend more gradually than in the case of truly
polyhedral vesicles. However, the quantitative description of such faceted vesicles calls for
interacting ridge and vertex geometries, which we did not consider in our simple elastic
models of polyhedral ridges and vertices. Moreover, a more comprehensive understanding
of the characteristic range of polyhedron sizes will, among other things, necessitate a
quantitative description of the formation of bilayer polyhedra from spherical bilayer vesicles
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[6-10] during the cooling down process. Such a description of kinetic effects [30,53] will
also be necessary to predict the distribution of the symmetries and sizes of polyhedral
bilayer vesicles and may shed light on the mechanism leading to the segregation of excess
amphiphiles.

Our investigation of the elastic energy of polyhedral bilayer vesicles was motivated by the
proposal [7] that the shape of bilayer polyhedra is governed by minimization of elastic
bending energy. The resulting expressions of the total polyhedral bending energy are
obtained from simple models based on continuum elasticity theory and do not consider the
details of molecular interactions between amphiphiles. An approach complementary to the
one developed here would therefore account for specific molecular structures [54] of
amphiphile bilayers. In particular, as far as the symmetry of polyhedral bilayer vesicles is
concerned, an intriguing possibility is that optimal tilt angles between amphiphiles, which
have been reported for a variety of lipid species [55], might influence the packing of
amphiphiles along polyhedral vertices and ridges and, hence, affect the preferred vertex and
ridge geometries. While such a detailed study of the molecular structure of bilayer polyhedra
is beyond the scope of the present article, we note that a molecular-level approach is
expected to suggest descriptions of amphiphile segregation superior to the simple models of
perfect segregation of excess amphiphiles employed here (see, for instance, Fig. 4), and
permit a more realistic representation of the amphiphile species used in experimental
investigations of bilayer polyhedra [6-10].

It is instructive to compare the results presented here to recent theoretical studies carried out
in the contexts of two-dimensional superconductors with vortices [12], viral capsids [13,14],
and the buckling of ionic shells [15], which all employed approaches complementary to
ours. In agreement with our analysis, these studies suggest that the elastic energies of chiral
shapes such as the snub dodecahedron and the snub cube can be favorable compared to the
icosahedron [12-14] and that, even if the icosahedral shape is imposed, the minimum energy
structure may still be chiral [15]. In our analysis we followed the experimental
phenomenology of bilayer polyhedra [6-10] and focused on contributions to the elastic
bending energy captured by the mean curvature. Thus, we neglected other contributions to
the free energy of bilayer polyhedra stemming, for instance, from the Gaussian curvature,
electrostatic interactions, or entropy loss due to molecular segregation. These other
contributions to the free energy, as well as kinetic effects [30,53] and the detailed molecular
structure of amphiphile bilayers [54,55] at polyhedral vertices and ridges, could potentially
modify the preferred vesicle shape and polyhedral symmetry.

VIII. SUMMARY AND CONCLUSIONS
In this article we explored the total elastic bending energy of polyhedral bilayer vesicles
[6-10]. Due to current experimental uncertainties regarding the physical properties of bilayer
polyhedra, we did not attempt to make accurate estimates of the absolute values of
polyhedral bending energies. Instead, we made general predictions pertaining to the most
favorable polyhedral symmetries, and to the competition between polyhedral and spherical
bilayer vesicles. Our results only rely on broad assumptions concerning the mechanical
properties of bilayer polyhedra and the applicability of the Helfrich-Canham-Evans free
energy of bending [17-19] at the ridges and vertices of bilayer polyhedra. We assessed the
validity of these phenomenological expressions of ridge and vertex energies by making
comparisons to solutions of the two-dimensional equations of elasticity obtained previously
[20-25] for polyhedral ridges and vertices in certain limiting cases.

In agreement with experiments on polyhedral bilayer vesicles [6-10], we find that bilayer
polyhedra can indeed be energetically favorable compared to spherical bilayer vesicles if
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one allows for molecular segregation of excess amphiphiles along the ridges of bilayer
polyhedra. Furthermore, our calculations suggest that closed bilayer vertices may break up
to form pores, which is also consistent with experimental observations [6-8]. However, our
analysis implies that, contrary to what has been suggested on the basis of experiments [6,7],
the icosahedron does not represent the polyhedral shape with minimal bending energy
among arbitrary polyhedral shapes and sizes. Using a variety of different expressions of
polyhedral bending energy we find that, for large polyhedron sizes, the snub dodecahedron
and the snub cube have lower total bending energies than the icosahedron. Our results
suggest revisiting the symmetry of polyhedral bilayer vesicles, and the possible mechanisms
governing their formation, in greater experimental detail.
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APPENDIX A: EVALUATION OF CONICAL PORE ENERGY
Substituting Eqs. (11)–(13) into the Helfrich-Canham-Evans free energy of bending in Eq.
(1) one obtains an integral over ω with the integrand composed of a sum of terms
proportional to cos(|ω| ± θ)/R2, cos(|ω| ± θ), and cos(|ω| ± θ)R2. The integrals corresponding
to the latter two terms can be evaluated by elementary methods. To evaluate the terms with
integrands of the form cos(|ω| ± θ)/R2 we note that

(A1)

and complete the square in the numerator on the right-hand side of the above equation. We
then use the results [56]

(A2)

valid for ξ2 > 1, and

(A3)

valid for ξ − cos x ≠ 0, to arrive at Eq. (14).

APPENDIX B: ELECTROSTATIC RIDGE ENERGY
Betterton and Brenner [49] analyzed the effect of electrostatics on the stability of planar
membranes of fixed area. Assuming that the surface charge density is constant, the total
charge contained in the screening cloud surrounding the membrane in solution is also
constant. However, the volume of the screening cloud depends on the membrane geometry.
In particular, formation of pores increases the volume accessible to counterions, thus leading
to an increase in entropy compared to planar membranes. The gain in free energy due to
pore formation can be quantified [49] by noting that, for r ⪡ λD, where r is the pore radius
and λD is the Debye length, the screening cloud gains a volume 2πλDr2 through pore
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formation. Similarly, for r ⪢ λD, the volume change is . Approximating the strength of
the electrostatic field in the screening cloud by E = σ/∊0D, where σ is the surface charge
density, ∊0 is the electric constant, and D is the dielectric constant, one therefore expects an
energy decrease of

(B1)

in which we have set the energy density of the electrostatic field equal to .

The heuristic estimates in Eq. (B1) are confirmed [49] by solving the Debye-Hückel
equation for a pore in a charged membrane. The electrostatic contributions to the free energy
in Eq. (B1) are in competition with the energy penalty imposed by line tension along the
pore edge. As shown in Sec. V, the elastic pore energy is approximately linear in the pore
radius beyond r ≈ 2 nm. Thus, in principle there could be a regime for which pores of a
finite radius are stable due to the competition between elastic and electrostatic contributions
to the free energy, although attaining such a regime would require [49] delicate adjustment
of the various elastic and electrostatic parameters.

Based on the picture [49] outline above, we can obtain a heuristic expression of the
electrostatic ridge energy. Describing a ridge as a bilayer bending by an angle π − αi around
a cylinder of radius R1 with charged amphiphiles in the outer membrane leaflet only (see
Fig. 4), the volume of the screening cloud associated with a ridge of length li is
approximately given by

(B2)

where, based on the experimental observations in Refs. [6,7], we have assumed that λD ⪢ m.
Thus, one finds that the electrostatic energy is decreased by

(B3)

through the formation of a ridge. In contrast to elastic ridge energies, the polyhedral shape

with the most favorable electrostatic ridge energy maximizes, for R1 ⪡ λD, 
within this heuristic picture. Among the convex polyhedra with regular polygons as faces,
this is achieved by the gyroelongated square dipyramid shown in Fig. 15, while the snub

dodecahedron produces a somewhat smaller value of  than the icosahedron.
However, based on the experimental phenomenology of bilayer polyhedra, electrostatic
contributions to the free energy are expected [7] to be negligible compared to elastic
contributions. Furthermore, it is questionable whether the assumption of a constant overall
charge holds for bilayer polyhedra, and whether the mean-field picture invoked here
represents a good approximation of the energetics governing the narrow counterion clouds
surrounding polyhedral ridges.
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FIG. 1.
(Color online) Side view of a ridge with dihedral angle αi bending (a) over an arc length d of
a cylinder with radius R1 and (b) over an arc length comparable to the small-scale cutoff b.
The red and blue amphiphile species represent myristic acid and CTAOH, which are
negatively and positively charged, respectively. The arrows in panel (b) denote bond vectors
connecting adjacent amphiphiles.
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FIG. 2.
(Color online) Illustration of a polyhedral vertex with face angle βj. As in Fig. 1(b), the
arrows represent bond vectors connecting adjacent amphiphiles, but now with the bond
vectors being parallel rather than perpendicular to ridges.
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FIG. 3.
(Color online) Schematic illustrations of two models of vertex pores for an amphiphile
monolayer thickness m and an amphiphile headgroup thickness h. (a) Cross section of half
of a pore around the tip of a cone (inset) with apex angle π − 2θ and radius r. (b) Side view
(left panel) and top-down view (right panel) of a pore with radius r composed of straight
edges of length sj along each face which bend through an angle γj from one face to a
neighboring face.
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FIG. 4.
(Color online) Side view of a ridge with dihedral angle αi and perfect segregation of excess
amphiphiles in the outer bilayer leaflet. Note that, compared to Fig. 1, the neutral plane of
bending is shifted from the mid-plane of the bilayer to the amphiphile head-tail interface of
the inner membrane leaflet.
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FIG. 5.
(Color online) Total bending energy of a conical pore in Eq. (14), rim contribution in Eq.
(32), and loop contribution in Eq. (33) versus pore radius r for [7] m = 2 nm, h = 0.5 nm, and

, with (a) θ = 0 and (b) θ = 0.4π.
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FIG. 6.
(Color online) Bending energy of a conical pore in Eq. (14) versus pore radius r for [7] m =
2 nm, h = 0.5 nm, and (a) θ = 0 and (b) θ = 0.4π for the indicated values of the monolayer
spontaneous curvature .
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FIG. 7.
(Color online) Edge tension λ in Eq. (34) for a conical pore versus pore radius r for m = 2
nm and (a) θ = 0 and h = 0.5 nm with , (b) θ = 0 and h = 0.5 nm with ,
(c) θ = 0.4π and h = 0.5 nm with , and (d) θ = 0 and h = 0.8 nm with 
using  for the green (upper) curves,  for the blue (middle) curves,
and  for the red (lower) curves in each panel. The shaded regions of the plots
correspond to typical measured values [2] of the edge tension of amphiphile bilayers.
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FIG. 8.
(Color online) Elastic bending energy of a polygonal pore in Eq. (21) versus pore radius r
for the icosahedron, and ratio of conical and polygonal pore energies (inset), for [7] m = 2
nm and h = 0.5 nm, using  for the green curves (upper curves in the large-r
regime),  for the blue curves (middle curves in the large-r regime), and

 for the red curves (lower curves in the large-r regime). The polygonal pore
energy is calculated by noting that, for the icosahedron, five ridges meet at each vertex with
the face angle βj = π/3. The corresponding conical pore energy is obtained using the vertex
angle Ω = 2π − 5 arcsin(2/3) ≈ 2.6 for the icosahedron, which gives θ ≈ 0.2π. The horizontal
black line in the inset denotes the ratio of the circumference of conical and polygonal pores,

which is equal to  for the icosahedron.
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FIG. 9.
(Color online) Image and net representations of (a) the icosahedron, (b) the snub
dodecahedron, (c) the snub cube, (d) the great rhombicosidodecahedron, (e) the triangular
prism, (f) the square antiprism, (g) the gyroelongated pentagonal birotunda, and (h) the
pentagonal hexecontahedron. Polyhedron (a) is a Platonic solid, polyhedra (b), (c), and (d)
are Archimedean solids, polyhedron (e) is a prism, polyhedron (f) an antiprism, polyhedron
(g) a Johnson solid, and polyhedron (h) a Catalan solid. The Catalan solid in (h) is the dual
of the Archimedean solid in (b), and the polyhedra in (b), (c), (g), and (h) are chiral.
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FIG. 10.
(Color online) Total bending energies of the convex polyhedra with regular faces,
normalized by the bending energy of the icosahedron, Gi, for homogeneous bilayers with (a)
the vertex energy  in Eq. (10) and the ridge energy  in Eq. (7), (b) the polygonal pore

energy  in Eq. (21) with r = 0 and the ridge energy  in Eq. (7), (c) the polygonal pore

energy  in Eq. (21) with r = 0 and the upper bound Y/Kb = 10 nm−2 on the ridge energy

 in Eq. (31), and (d) the polygonal pore energy  in Eq. (21) with r = 0 and the lower
bound Y/Kb = 10−3 nm−2 on the ridge energy  in Eq. (31). We use the parameter values
[6,7,30] m = 2 nm, h = 0.5 nm, , and . The bold black curve denotes
the bending energy of the sphere, and the colored (gray) curves denote the bending energies
of bilayer polyhedra, where the bold curve minimizing polyhedral bending energy in the
large-Rp regime corresponds to the snub dodecahedron.
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FIG. 11.
(Color online) Ridge energies of the 13 Catalan solids, normalized by the ridge energy of the
icosahedron, Gi, with (a) the ridge energy  in Eq. (7), and (b) the upper bound Y/Kb = 10
nm−2 on the ridge energy  in Eq. (31).
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FIG. 12.
(Color online) Total bending energies of the convex polyhedra with regular faces,
normalized by the bending energy of the icosahedron, Gi, with segregation of excess
amphiphiles at vertices but not at ridges. The energy curves are obtained with the ridge
energy  in Eq. (7) [panels (a), (c), and (e)] and the upper bound Y/Kb = 10 nm−2 on the
ridge energy  in Eq. (31) [panels (b), (d), and (f)] with pores of radius (a), (b) r = 0, (c),
(d) r = 20 nm, and (e), (f) r = 40 nm at each vertex. The bold black curve=denotes the
bending energy of the sphere, and the colored (gray) curves denote the bending energies of
bilayer polyhedra, where the bold curve minimizing polyhedral bending energy in the large-
Rp regime corresponds to the snub dodecahedron.
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FIG. 13.
(Color online) Total bending energies of the convex polyhedra with regular faces,
normalized by the bending energy of the icosahedron, Gi, with segregation of excess
amphiphiles at ridges but not pores [panel (a)], and at ridges and pores [panels (b)–(f)]. For

panel (a) we use the pore energy  in Eq. (21) with r 0 and the ridge energy  in Eq.
(22) with the parameter values [6,7,30] m = 2 nm, h = 0.5 nm, , and .
The remaining panels are obtained using only the ridge=energy  in Eq. (22) with pores of
radius (b) r = 0, (c) r = 1 nm, (d) r = 5 nm, (e) r = 20 nm, and (f) r = 40 nm. The bold black
curve =denotes the bending energy of the sphere, and the colored (gray) curves denote the
bending energies of bilayer polyhedra, where the bold curve minimizing polyhedral bending
energy in the large-Rp regime corresponds to the snub dodecahedron.
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FIG. 14.
(Color online) Theoretical estimates of the optimal amphiphile imbalance rI, defined in Eq.
(24), for the convex polyhedra with regular faces as a function of the polyhedron radius Rp
with [7] m = 2 nm for (a) r = 0 nm and (b) r = 20 nm.
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FIG. 15.
(Color online) Image and net representations of the gyroelongated square dipyramid.

Haselwandter and Phillips Page 39

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Haselwandter and Phillips Page 40

TABLE I

Vertex energy  in Eq. (10) for homogeneousbilayers, vertex energy  in Eq. (23) for perfectly segregated
bilayers, conical pore energy  in Eq. (14) for the minimum pore radius r = rm, and polygonal pore energy

 in Eq. (21) for r = 0 in units of monolayer bending modulus  for the five Platonic solids with m = 2 nm
and h = 0.5 nm [7]. The ranges of  and  are obtained with  and ,
respectively.

Platonic solid Gv
(h ) Gv

(s) Gp
(c)(r = rm) Gp

(p)(r = 0)

Tetrahedron 6.6
Kb

Kb
∗ 6.6 10–15 4.9–8.2

Cube 3.7
Kb

Kb
∗ 3.7 8.9–11 11–16

Octahedron 8.8
Kb

Kb
∗ 8.8 9.1–12 6.6–11

Dodecahedron 2.4
Kb

Kb
∗ 2.4 7.6–8.3 16–21

Icosahedron 11
Kb

Kb
∗ 11 7.9–8.9 8.2–14
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