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Abstract: Combining whole genome data with previously obtained amplicon 
sequences has the potential to increase the resolution of phylogenetic 
analyses, particularly at low taxonomic levels or where recent 
divergence, rapid speciation or slow genome evolution has resulted in 
limited sequence variation. However, the integration of these types of 
data for large scale phylogenetic studies has rarely been investigated. 
Here we conduct a phylogenetic analysis of the whole chloroplast genome 
and two nuclear ribosomal loci for 65 Acacia species from across the most 
recent Acacia phylogeny. We then combine this data with previously 
generated amplicon sequences (four chloroplast loci and two nuclear 
ribosomal loci) for 508 Acacia species. We use several phylogenetic 
methods, including maximum likelihood bootstrapping (with and without 
constraint) and ExaBayes, in order to determine the success of combining 
a dataset of 4,000 bp with one of 189,000 bp. The results of our study 
indicate that the inclusion of whole genome data gave a far better 
resolved and well supported representation of the phylogenetic 
relationships within Acacia than using only amplicon sequences, with the 
greatest support observed when using a whole genome phylogeny as a 
constraint on the amplicon sequences. Our study therefore provides 
methods for optimal integration of genomic and amplicon sequences. 
 
 
 
 



(e) Whole chloroplast genome tree

(a) Six gene small amplicon sequence tree

(d) Constraint tree

(b) Super matrix analysis (RAxML)

(c) Super matrix analysis (ExaBayes)
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Abstract 19 

Combining whole genome data with previously obtained amplicon sequences has the 20 

potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic 21 

levels or where recent divergence, rapid speciation or slow genome evolution has resulted in 22 

limited sequence variation. However, the integration of these types of data for large scale 23 

phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of 24 

the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from 25 

across the most recent Acacia phylogeny. We then combine this data with previously 26 

generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 27 

Acacia species. We use several phylogenetic methods, including maximum likelihood 28 

bootstrapping (with and without constraint) and ExaBayes, in order to determine the success 29 

of combining a dataset of 4,000 bp with one of 189,000 bp. The results of our study indicate 30 

that the inclusion of whole genome data gave a far better resolved and well supported 31 

representation of the phylogenetic relationships within Acacia than using only amplicon 32 

sequences, with the greatest support observed when using a whole genome phylogeny as a 33 

constraint on the amplicon sequences. Our study therefore provides methods for optimal 34 

integration of genomic and amplicon sequences. 35 

 36 

Keywords: integrative systematics, whole chloroplast genome, Acacia, ExaBayes, RAxML 37 

38 
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1. Introduction 39 

Phylogenetic analysis of plant species has traditionally used highly variable DNA 40 

sequence data found throughout chloroplast introns and intergenic spacer regions (Baldauf et 41 

al., 2000; Gielly and Taberlet, 1994; Moncalvo et al., 2002; Peterson and Eernisse, 2001; 42 

Taberlet et al., 1991). However, using a small number of loci is frequently insufficient to 43 

resolve evolutionary relationships, particularly at low taxonomic levels or where recent 44 

divergence, rapid speciation or slow genome evolution has limited sequence variation (Kane 45 

et al., 2012; Parks et al., 2009; Whittall et al., 2010; Yang et al., 2013; Zhang et al., 2011). 46 

Phylogenetic resolution and support is known to depend on both the number of characters and 47 

the number of taxa included in a study (Jansen et al., 2007; Philippe et al., 2011). While 48 

utilising too few genes may result in incongruence between gene regions and will increase the 49 

capacity for error in the phylogeny (Philippe et al., 2011; Rokas and Carroll, 2005), using too 50 

few species will result in a phylogeny that is more sensitive to homoplasy. Thus, the ideal is 51 

clearly to use the maximum number of genes across the maximum number of taxa.  52 

There has been considerable debate regarding the most efficient way in which to 53 

increase resolution in phylogenies and to reduce error (Graybeal, 1998; Hillis, 1998; Mitchell 54 

et al., 2000; Nabhan and Sarkar, 2012; Wiens and Tiu, 2012). Although it has been claimed 55 

that increased resolution and node support can be equally well achieved by increasing the 56 

number of taxa sampled as by increasing the number of characters (Rosenberg and Kumar, 57 

2001, 2003), there is evidence to suggest that in more closely related species, such as within a 58 

single genus, increasing the number of characters is more beneficial to resolving a tree (Hillis 59 

et al., 2003; Zwickl and Hillis, 2002). 60 

High-throughput sequencing has significantly increased the efficiency of phylogenetic 61 

studies, in particular by enabling whole genome (typically organelle) sequencing of non-62 
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model species, resulting in a vast increase in the data available for phylogenetic tree 63 

construction (Bayly et al., 2013; Huang et al., 2014a; Huang et al., 2014b; Lin et al., 2010; 64 

Parks et al., 2009; Zhang et al., 2011). The overall genetic resources are thus increasingly 65 

consisting of both multi-locus amplicon sequences, and also whole genome data for a small 66 

number of species. While the production of many genomic sequences remains an ongoing 67 

process, the integration of a small number of genomic sequences with a large number of 68 

small amplicon sequences has the potential to allow a transition towards the more 69 

commonplace use of whole genome sequences. 70 

The issue of combining datasets with vastly different numbers of characters was first 71 

addressed in the context of integrating morphological data, particularly fossil data, with 72 

molecular data (Huelsenbeck, 1991; Wiens, 2003a, b, 2005; Wiens et al., 2010), and many of 73 

the same principles apply to the integration of genomic (whole genome) data with small 74 

amplicon sequences (Roure et al., 2013; Sanderson et al., 2010). Responses to the integration 75 

of genomic and amplicon data have varied with some studies indicating that it is the number 76 

of characters available rather than the number of characters missing that is the key influence 77 

on phylogenetic accuracy (Driskell et al., 2004; Roure et al., 2013; Wiens, 2003a, b; Wiens 78 

and Moen, 2008), while other studies suggest that the absence of large amounts of data has 79 

significant negative impacts on accuracy (Lemmon et al., 2009). While these findings have 80 

been shown in simulated datasets, few empirical studies have attempted the integration of 81 

genomic and amplicon sequences. 82 

A good test of the potential for genomic and amplicon data integration is in the 83 

phylogenetic analysis of the plant genus Acacia Mill., which is the most speciose genus in the 84 

Mimosoideae subfamily and Leguminosae family. The genus is predominantly found 85 

throughout Australia, with only a few species native to Southeast Asia, Hawaii and 86 

Madagascar (Brown et al., 2012; González-Orozco et al., 2011; Maslin et al., 2003). Acacia 87 
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has the largest number of species of any angiosperm genus in Australia (over 1,000; Council 88 

of Heads of Australasian Herbaria, 2012), and Acacia woodlands and shrublands make up 89 

approximately 24% of Australia’s total vegetation (Beeton et al., 2006). These species are not 90 

only of ecological significance, but also play a key role in agroforestry (Brockwell et al., 91 

2005; Midgley and Turnbull, 2003; Thomson et al., 1994), and internationally as invasive 92 

species, with 23 species of Acacia currently listed as invasive species across 12 different 93 

geographical regions (Richardson and Rejmánek, 2011). Consequently, understanding the 94 

phylogenetic relationships between these species is vital for informing conservation, 95 

agroforestry and invasive species management. 96 

Substantial incremental knowledge of Acacia phylogenetics has been gained over the 97 

past two decades through amplicon sequences of nuclear ribosomal (ITS and ETS) and 98 

selected plastid loci (e.g. psbA-trnH, trnL-trnF, rpl32-trnL, matK) (Miller et al., 2003; Miller 99 

and Bayer, 2001, 2003; Murphy et al., 2010; Murphy et al., 2003; Murphy et al., 2000), 100 

leading to a phylogeny containing over 500 species terminals (Mishler et al., 2014). These 101 

studies have identified well-supported major clades similar to those identified by Murphy et 102 

al. (2010), and have provided strong support for many relationships near the tips of the tree 103 

and other internal nodes; however, the backbone nodes remain poorly supported with less 104 

than 20% of nodes showing bootstrapping support greater than 0.95. Thus, additional taxa 105 

and/or character data are necessary to understand the evolutionary relationships of Acacia. 106 

Here we demonstrate the feasibility and effectiveness of incorporating whole chloroplast 107 

genome sequences with small amplicon sequences from a limited number of loci produced in 108 

previous phylogenetic analysis of Acacia. In this study we sequence the chloroplast genomes 109 

for 65 Acacia species from across the most recent phylogeny (Mishler et al., 2014). We firstly 110 

identify whether increasing the number of characters or taxa has the greatest influence on 111 

phylogenetic resolution and support in Acacia, then combine our data with the 510 specimens 112 
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of Mishler et al. (2014), using both maximum likelihood bootstrapping (with and without 113 

constraints) and Bayesian methods to identify the best method of data integration. 114 

 115 

2. Materials and Methods 116 

2.1. Sampling 117 

This dataset consisted of 65 Acacia species (a total of 94 individuals), and two 118 

outgroups, Pararchidendron pruinosum and Paraserianthes lophantha subsp. lophantha. 119 

Phyllode material was collected from 77 individuals from native populations, eight 120 

individuals from within Kings Park and Botanic Garden (West Perth, Western Australia) and 121 

from nine specimens held at the Western Australian Herbarium (Kensington, Western 122 

Australia; see Appendix A for all specimen details and herbarium voucher numbers). 123 

 124 

2.2. DNA Sequencing 125 

Total genomic DNA was extracted from either fresh or dried phyllode material using the 126 

methods of Jobes et al. (1995) or Butcher et al. (1998). DNA quality and quantity were 127 

assessed using a NanoDrop spectrophotometer (ND-1000; Thermo Fisher Scientific, USA), 128 

and via agarose gel electrophoresis. Individual genome library preparations were performed 129 

using a Nextera DNA Sample Preparation Kit (Illumina, USA), following the manufacturer’s 130 

instructions. Libraries were then prepared for sequencing using the cBot cluster generation 131 

and PE V3 flow cell and cluster generation (Illumina, USA). The libraries were sequenced on 132 

a single lane in paired end mode using the HiSeq2000 platform and V3 SBS kit (Illumina, 133 

USA). Library preparations and sequencing were both performed at the Ramaciotii Centre for 134 

Gene Function Analysis (Sydney, Australia; http://devspace.ddtoo.com). 135 

http://devspace.ddtoo.com/
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 136 

2.3. Sequence Assembly 137 

For each specimen, overlapping paired-end reads were merged using the software 138 

FLASH (version 1.2.7; Magoc and Salzberg, 2011). Merged reads were assembled using 139 

Velvet (version 1,2,08; Zerbino and Birney, 2008) with k-mer values of 31, 41, 51 and 61, 140 

and coverage cut-off of 10. For each assembly, MUMmer (version 3.0; Kurtz et al., 2004) 141 

was used to compare the assembled chloroplast contigs with the closest related complete 142 

chloroplast genome sequence available, Acacia ligulata Benth. (Leguminosae; EMBL 143 

accession number LN555649). Contigs were then merged to produce a single draft genome. 144 

Assemblies were refined by repeatedly mapping raw reads to the draft sequence using 145 

Geneious (version 6.1.8; Drummond et al., 2011) and adjusting as necessary. Draft genomes 146 

were annotated by direct comparison with the A. ligulata genome and sequences were 147 

deposited into EMBL (accession numbers are available in Appendix B). Raw reads were also 148 

mapped to ITS and ETS sequences from Acacia anthochaera Maslin (Genbank accessions 149 

DQ029243 and DQ029284) using Geneious (Drummond et al., 2011). All 95 draft genomes 150 

and the A. ligulata reference genome were aligned using MAFFT (Katoh et al., 2002) in 151 

Geneious (Drummond et al., 2011). Due to variation in inverted repeat sizes, particularly 152 

relative to the outgroups, only one IR copy was included in the alignment. Separate ITS and 153 

ETS alignments were also developed for all 96 specimens using MAFFT (Katoh et al., 2002). 154 

 155 

2.4. Phylogenetic Analyses 156 

2.4.1. Effect of character number of phylogenetic accuracy  157 

In order to compare the influence of increased characters on phylogenetic accuracy, a 158 

subset of taxa was taken separately from both our dataset and that of Mishler et al. (2014), 159 
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which included only those taxa present in both datasets. For both subsets, Bayesian analyses 160 

were conducted using the program ExaBayes (version 1.4.1; Aberer et al., 2014) on the 161 

Magnus supercomputer (located at the Pawsey Centre, Kensington, Western Australia). 162 

Analyses were run for 10 million generations with sampling every 500 generations. Each 163 

analysis consisted of four independent runs, each utilising four chains. Convergence between 164 

runs was monitored by finding a plateau in the likelihood scores (standard deviation of split 165 

frequencies < 0.0015). Convergence of additional parameters was also checked during post-166 

processing, with all ESS vales above 200. The first 25% of each run was discarded as burn-in 167 

for the estimation of a majority rule consensus topology and posterior probability for each 168 

node. 169 

 170 

2.4.2. Effect of increased taxa on phylogenetic accuracy  171 

Our second analysis was designed to provide a baseline for comparing the effect of 172 

additional taxa on the integrated dataset. This was achieved by constructing a phylogenetic 173 

tree using specimens from both datasets but only at the six loci used by Mishler et al. (2014). 174 

Each chloroplast locus was extracted from the whole genome alignment, and individual loci 175 

(including ITS and ETS) were aligned with their corresponding alignment in the Mishler et 176 

al. (2014) datasets using the MAFFT consensus alignment in Geneious (Drummond et al., 177 

2011; Katoh et al., 2002). All six loci were then concatenated to form a complete dataset for 178 

all 606 specimens. The alignment was then used in a maximum likelihood bootstrapping 179 

analysis with RAxML (version 8.1.11; Stamatakis, 2014) on the CIPRES Science Gateway 180 

server (Miller et al., 2010). 181 

 182 

2.4.3. Super matrix integration of increased taxa and characters  183 
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The integration of the datasets was firstly performed by simply combining the 510 184 

specimens of Mishler et al. (2014) with the 96 genomes from this study into a single 185 

alignment using the MAFFT consensus alignment in Geneious (Drummond et al., 2011). The 186 

resulting alignment was analysed using the RAxML method (above), and then using the 187 

ExaBayes method (above), with the analysis taking approximately 14 days of walltime (4 188 

years 275 days of CPU time). 189 

 190 

2.4.4. Constraint analysis integration of increased taxa and characters  191 

Finally, in order to remove potential bias caused by the presence of missing data, and 192 

also to incorporate information present in the genomic sequences, we used the ExaBayes 193 

method to produce a phylogenetic tree based solely on the 96 chloroplast genomes. Bayesian 194 

analysis of the full chloroplast genome alignment took approximately 12 hours of walltime 195 

(4,486 hours of CPU time). The RAxML method was then used to analyse all sequences at 196 

the six loci of Mishler et al. (2014), using the whole genome phylogenetic topology as a 197 

constraint. The differences between all our integrated trees were determined using the 198 

program HashRF (version 6.0.1; Sul and Williams, 2007; Sul and Williams, 2008), which 199 

computes the Robinson-Foulds (RF) distance between pairs of trees. 200 

 201 

3. Results 202 

3.1. Chloroplast Assembly 203 

 Illumina sequencing of libraries prepared from total DNA produced between 405,245 204 

and 4,041,457 paired-end reads with a length of 100 nt. For each specimen, approximately 205 

5% of reads was assembled into contigs that were homologous to the A. ligulata reference 206 
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chloroplast. Annotation of the draft genomes confirmed the presence of 76 unique protein 207 

coding genes, 4 rRNA genes and 30 tRNA genes, in each individual, indicating that there had 208 

been no loss of genes or introns relative to A. ligulata. All genes were fully assembled for all 209 

95 individuals, with the exception of the accD gene, which displayed a several 100 bp repeat 210 

region which could not be accurately assembled, and the trnS-GCU gene which could be only 211 

partially assembled in six individuals. Of a total of 109 intergenic spacer regions, 21 could 212 

not be fully assembled. Following removal of unassembled regions, specimens maintained 213 

between 78.1 and 98.5% identity with the A. ligulata reference (Appendix B). Key 214 

differences between species included inversion of the region between ndhC and trnV-UAC in 215 

A. exocarpoides, A. erinacea, of the region between psbE and trnV-UAC in A. acanthoclada 216 

subsp. glaucescens, A. scalene and A. acuaria and of the region between psaI and ycf4 in A. 217 

cerastes, A. restiacea, A. scleroclada and A. woodmaniorum. These inversions were reverted 218 

in later analyses in order to facilitate alignment of genes.  219 

 220 

3.2. Is Increased Resolution Caused by the Addition of Characters or Taxa? 221 

3.2.1. Effect of character number of phylogenetic accuracy  222 

In order to test whether the addition of characters or taxa was responsible for any 223 

changes observed in support and resolution of the integrated phylogenies, we firstly created 224 

separate phylogenetic trees from both our dataset and that of Mishler et al. (2014) using only 225 

the taxa in common to both. Each alignment consisted of 41 Acacia species and two 226 

outgroups. Bayesian analysis of the Mishler et al. (2014) subset created a phylogeny with 227 

61.0% of nodes displaying a high level of support (posterior probabilities of 0.95 or more; 228 

Fig. 1a). In contrast, the whole genome phylogeny was highly supported in 94.9% of nodes 229 

(Fig. 1b). Key clades were compared between these two trees (clades A-Q; Fig. 1). The most 230 
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important differences seen in the phylogeny created from the Mishler et al. (2014) data 231 

included clade A forming a sister group to clades N-Q (PP = 0.9), clade C forming a sister 232 

group to clade D (PP=0.94) rather than basal to clades D-M, and clade E forming a sister 233 

group to clade G (PP = 0.74) rather than basal to clades G-M. Clade N also formed a sister 234 

group with clade P (PP = 0.83) rather than clade O. A number of species also appeared within 235 

different clades in each tree, for example, A. andrewsii, A. obtecta, A. hemiteles, A. acuaria 236 

and A. stanleyi. 237 

 238 

3.2.2. Effect of increased taxa on phylogenetic accuracy  239 

In order to compare the influence of increased taxa on the Acacia phylogeny, we 240 

followed the method of Mishler et al. (2014) to create a tree using only the six loci from both 241 

datasets. Combining the loci in common to both datasets resulted in an alignment of 3,956 bp. 242 

In total, this combined dataset consisted of 602 Acacia specimens (534 species) and four 243 

outgroups (2 species). Overall support for this tree was low with only 18.3% of nodes 244 

showing bootstrap values of 95% of more (Appendix C). The major clades previously 245 

identified by Murphy et al. (2010) were all present within this phylogeny (Fig. 2), although 246 

the presence of another clade (also observed in the Mishler et al. (2014) phylogeny; hereafter 247 

referred to as the A. longispinea clade) was evident. Support for these clades was highest in 248 

the A. victoriae / A. pyrifolia clade (BS = 100%). The other clades were far less well-249 

supported with 52% for the A. longispinea, 78% for the A. murrayana clade, 7% for the p.u.b. 250 

clade, 30% for the Pulchelloidea clade and 67% for the Botrycephalae subclade. Smaller 251 

clades (A-Q) were identified in order to more closely compare trees. These clades all showed 252 

low support, with bootstrap support values between 1% and 78% (Fig. 3a). Of the 41 species 253 

present in both datasets, 22 occurred within the same clade and a further 17 formed 254 

monophyletic clades with conspecific individuals (Appendix C). 255 
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 256 

3.3. Integration of Genomic and Amplicon Sequences 257 

3.3.1. Super matrix analysis (RAxML)  258 

All 606 specimens were used to create a phylogeny using any available data for the 259 

given individual, i.e. approximately 4,000 bp for 510 specimens and approximately 141,000 260 

bp for 96 specimens. This meant that the overall alignment contained a large proportion of 261 

missing data. Overall, this tree displayed low support (18.6% of nodes showed high support; 262 

Appendix D). The major clades were all present within this tree with high support observed 263 

in the A. victoriae / A. pyrifolia clade (100% support). The A. longispinea and A. murrayana 264 

clades displayed 62% and 64$%, respectively, while p.u.b. clade (BS = 12%), Pulchelloidea 265 

clade (BS = 7%) and Botrycephalae subclade (BS = 27%) all showed much lower support. Of 266 

the smaller clades, all were present but none displayed a high level of support, with clades 267 

displaying between 0% and 64% bootstrap support (Fig. 3). Of the 41 species present in both 268 

datasets, 22 occurred in the same clade and a further 16 were monophyletic with conspecific 269 

individuals (Appendix D). 270 

 271 

3.3.2. Super matrix analysis (ExaBayes)  272 

The super matrix analysis using ExaBayes produced the tree with the most variation 273 

from the other combined trees (RF = 200-217; Table 1), and overall support was still low at 274 

42.0% (Appendix E). The major clades were all present and the A. longispinea and A. 275 

victoriae / A. pyrifolia clades showed posterior probabilities of 0.95 or more (Fig. 2). The 276 

smaller clades were also highly supported in four out of the seventeen clades (A, C, D, K; 277 

Fig. 3c). Seventeen of the species present in both datasets formed monophyletic groups, while 278 
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nineteen others were present in the same larger clades as other conspecific individuals 279 

(Appendix E). 280 

 281 

3.3.3. Constraint analysis  282 

In order to incorporate the genomic data while also avoiding large proportions of 283 

missing data within the overall dataset, the 3, 956 bp alignment was analysed using RAxML, 284 

with a topology of the 96 genomes analysis as a constraint. To develop the constraint, we 285 

analysed all 96 whole plastid genomes separately. The complete MAFFT alignment of all 96 286 

genomes resulted in an aligned length of 187,573 bp. This tree was highly supported in 287 

96.8% of nodes (Appendix F). Sixteen out of the seventeen smaller clades showed a high 288 

level of support for their topology with the lowest posterior probability observed in the tree 289 

being only 0.62 (Fig. 3e). Given the high support for this tree, we were confident that this 290 

topology provided a good constraint for the backbone of the larger dataset. Using this tree as 291 

a constraint on the 3,956 bp alignment produced an identical topology to the whole genome 292 

tree, but with far lower overall support (20.0% of nodes were highly supported; Appendix G). 293 

This tree showed the greatest similarity to the small amplicon sequence tree (RF = 144; Table 294 

1), with the major clades again showing high support in the A. victoriae / A. pyrifolia clade 295 

(bootstrapping support of 100%; Fig. 2), while the smaller clades had lower support ranging 296 

from 1% to 100% (Fig. 3d). Of the 41 specimens present in both datasets, 17 formed 297 

monophyletic clades and 21 others were present within the same clade as conspecific 298 

individuals (Appendix G). 299 

 300 

4. Discussion 301 
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Of key interest to this study is the extent to which using this genomic data increased the 302 

support of the Acacia phylogeny. In order to determine whether increase in characters or taxa 303 

was responsible for any perceived increase in support and resolution, we firstly compare the 304 

support and resolution of two trees that differed only in the number of characters used to 305 

build them (Fig. 1). Our results clearly showed that, with 94.5% of nodes showing a posterior 306 

probability of more than 0.95 (Fig. 1), the use of a much larger volume of data produced 1.5X 307 

the number of highly supported nodes compared to when only six loci were used (where only 308 

61.0% of nodes were highly supported; Fig. 1). This result was consistent with previous 309 

findings in which a much higher level of support was observed in a genomic phylogeny of 310 

Pinus species (Parks et al., 2009), than when small amplicon sequences were used (Gernandt 311 

et al., 2005; Liston et al., 2007; Syring et al., 2007; Wang et al., 1999). Similar results have 312 

also been observed from the whole chloroplast genome analysis of apple species (Nikiforova 313 

et al., 2013), rice species (Waters et al., 2012) and Araucaria species (Ruhsam et al., 2015). 314 

Our analysis of small amplicon sequences supported our hypothesis that the number of 315 

characters had a greater influence on the support and resolution of the Acacia phylogeny. In 316 

this analysis, the two datasets were combined but only analysed using the six loci in common 317 

to all 606 specimens. Although this tree was slightly different to the phylogeny of Mishler et 318 

al. (2014), in particular clade O becoming a sister group to clades N+P+Q, the addition of 319 

taxa failed to improve the overall support of the tree which remained at only 18%. This result 320 

confirmed that the addition of further taxa was insufficient to produce a more well-supported 321 

phylogeny, and indicated that any increase in support observed in subsequent integrated trees 322 

was most likely caused by the increased number of characters. This result was consistent with 323 

the findings of Rokas and Carroll (2005), who also identified increased characters rather than 324 

increased taxa as being the key influence on phylogenetic accuracy in yeast. 325 

 326 
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4.1. Integration of Genomic and Amplicon Sequences 327 

 Although our initial results using a reduced number of taxa clearly showed that the 328 

use of whole genome sequences has the potential to increase phylogenetic support and 329 

resolution, the challenge remains in finding the best method of data integration. The 330 

phylogeny developed by Mishler et al. (2014), while showing strong support for the major 331 

clades, including A. victorae / A. pyrifolia, A. murrayana and A. longispinea clades, was less 332 

well resolved in the p.u.b. and Pulchelloidea clades and Botrycephalae subclade, and among 333 

the minor clades only showed high support for clades B, C, N, P and Q. 334 

 The addition of full genomic sequences to the dataset showed a clear change in the 335 

relationships among the clades compared to what was seen in both the Mishler et al. (2014) 336 

tree and the small amplicon sequence tree. The super matrix analysis tree clearly showed 337 

clade A as sister to clades B-Q, and clade H as a sister group to clades F+G. Additionally, 338 

clades L+M became sister to clade K, and clades N+O sister to clade P. Despite the change in 339 

tree topology, the RAxML tree did not show any more significant support than was seen in 340 

the small amplicon sequence tree. 341 

The ExaBayes super matrix analysis revealed an identical topology to the RAxML 342 

analysis with regards to the small clades (Fig. 3c), however the RF calculation clearly showed 343 

that the position of the tips within those clades was quite different (RF = 200; Table 1). The 344 

ExaBayes tree showed generally better support for the major clades and for the positions of 345 

many of the minor clades, with clades A, C, D, and K all showing posterior probabilities of 346 

greater than 0.95 (Fig. 3), suggesting that this tree was a better phylogenetic reconstruction 347 

than the RAxML tree. It should be noted however, that some of this may potentially have 348 

been an artefact of the Bayesian method, which has previously been identified as exhibiting 349 

higher support values than when using maximum likelihood methods (Douady et al., 2003; 350 
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Simmons et al., 2004). Compared to the phylogeny of Mishler et al. (2014), there remained a 351 

number of differences, including clade A becoming a sister group to clades B-P, clade F 352 

becoming a sister group to clade G and clade O becoming a sister group to clade N (Fig. 3c). 353 

  As expected, from the phylogenies based only on the taxa held in common to both 354 

datasets, the whole genome tree showed the greatest support of any of the trees. This 355 

phylogeny showed high support for sixteen out of the seventeen minor clades (Fig. 3). By 356 

using this tree as a constraint on the amplicon sequence data, we were able to remove any 357 

error caused by large proportions of missing data, while also maintaining the highly 358 

supported backbone identified in the whole genome phylogeny (Appendix F). The 359 

relationships between the minor clades were very similar to that seen in the super matrix 360 

analyses with the exception of clade C which became sister to clades D-M (PP = 0.62). The 361 

topology of the highly supported whole genome phylogeny was reflected in the constraint 362 

tree; however the constraint lacked the high support values found in the whole genome tree 363 

due to our reliance on a subset of the sequence length used in the whole genome tree. 364 

However, given that the topology of the minor clades was highly supported in the whole 365 

genome tree, we conclude that the constraint tree enabled the best integration of genomic and 366 

small amplicon sequence data. 367 

 368 

5. Conclusions 369 

 Our study shows that the use of whole chloroplast genome data for phylogenetics 370 

provides a far greater support and resolution than can be achieved using a small number of 371 

amplicon sequences. The results of our analyses suggest that the whole genome sequences 372 

play an important role in identifying highly supported nodes in the backbone of large 373 

phylogenies. The integration of data types showed typically low support, however higher 374 



17 
 

support was seen using Bayesian methods, and the best supported topology was achieved by 375 

using genomic sequences to build a highly supported backbone, upon which a large number 376 

of small amplicon sequences can be constrained. Our analyses have clearly shown the 377 

potential of genomic and amplicon data integration in phylogenetic studies of large genera, 378 

however this method is likely to also improve resolution and support of phylogenies 379 

displaying weak backbone support and where closely related species require additional 380 

characters to fully understand the phylogenetic relationships between them. We believe that 381 

the integration of genomic and amplicon sequences provides a practical means of bridging 382 

the gap between the large number of amplicon sequences currently available and the ever-383 

increasing number of genomic sequences that continue to be created. 384 

 385 

Acknowledgements 386 

This works was supported by an Australian Postgraduate Award to AVW. Additional 387 

funds were provided in kind by Bioplatforms Australia and by Karara Mining Ltd. This work 388 

was also supported by resources provided by the Pawsey Supercomputing Centre with 389 

funding from the Australian Government and the Government of Western Australia. We 390 

would like to thank Bruce Maslin and Ladislav Mucina for their aid in specimen 391 

identification and storage, and Karina Knight for her assistance in obtaining specimens from 392 

the Western Australian Herbarium. This manuscript includes work done by JTM while 393 

serving at the National Science Foundation. The views expressed in this paper do not 394 

necessarily reflect those of the National Science Foundation or the United States 395 

Government. 396 

 397 

References 398 



18 
 

Aberer, A.J., Kobert, K., Stamatakis, A., 2014. ExaBayes: massively parallel Bayesian 399 
tree inference for the whole-genome era. Molecular Biology and Evolution 31, 2553-2556. 400 

Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F., 2000. A Kingdom-Level 401 
Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290, 972-977. 402 

Bayly, M.J., Rigault, P., Spokevicius, A., Ladiges, P.Y., Ades, P.K., Anderson, C., 403 
Bossinger, G., Merchant, A., Udovicic, F., Woodrow, I.E., 2013. Chloroplast genome 404 
analysis of Australian eucalypts - Eucalyptus, Corymbia, Angophora, Allosyncarpia and 405 
Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69, 704-716. 406 

Beeton, R., Buckley, K.I., Jones, G.J., Morgan, D., Reichelt, R.E., Trewin, D., 2006. 407 
Independent report to the Australian Government Minister for the Environment and Heritage. 408 
In: Environment, D.o. (Ed.). 2006 Australian State of the Environment Committee. 409 

Brockwell, J., Searle, S.D., Jeavons, A.C., Waayers, M., 2005. Nitrogen fixation in 410 
acacias: an untapped resource for sustainable plantations, farm forestry and land reclamation. 411 
Australian Centre for International Agricultural Research (ACIAR). 412 

Brown, G.K., Murphy, D.J., Kidman, J., Ladiges, P.Y., 2012. Phylogenetic connections 413 
of phyllodinous species of Acacia outside Australia are explained by geological history and 414 
human-mediated dispersal. Australian Systematic Botany 25, 390-403. 415 

Butcher, P.A., Moran, G.F., Perkins, H.D., 1998. RFLP diversity in the nuclear genome 416 
of Acacia mangium. Heredity 81, 205-213. 417 

Council of Heads of Australasian Herbaria, 2012. Australian Plant Census. 418 

Douady, C.J., Delsuc, F., Boucher, Y., Doolittle, W.F., Douzery, E.J.P., 2003. 419 
Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic 420 
reliability. Molecular Biology and Evolution 20, 248-254. 421 

Driskell, A.C., Ané, C., Burleigh, J.G., McMahon, M.M., O'Meara, B.C., Sanderson, 422 
M.J., 2004. Prospects for building the tree of life from large sequence databases. Science 306, 423 
1172-1174. 424 

Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., 425 
Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., 426 
Wilson, A., 2011. Geneious v. 5.4. 427 

Gernandt, D.S., López, G.G., García, S.O., Liston, A., 2005. Phylogeny and 428 
classification of Pinus. Taxon 54, 29-42. 429 

Gielly, L., Taberlet, P., 1994. The use of chloroplast DNA to resolve plant phylogenies: 430 
noncoding versus rbcL sequences. Molecular Biology and Evolution 11, 769-777. 431 

González-Orozco, C.E., Laffan, S.W., Miller, J.T., 2011. Spatial distribution of species 432 
richness and endemism of the genus Acacia in Australia. Australian Journal of Botany 59, 433 
601-609. 434 

Graybeal, A., 1998. Is it better to add taxa or characters to a difficult phylogenetic 435 
problem? Systematic Biology 47, 9-17. 436 

Hillis, D.M., 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. 437 
Systematic Biology, 3-8. 438 



19 
 

Hillis, D.M., Pollock, D.D., McGuire, J.A., Zwickl, D.J., 2003. Is sparse taxon sampling 439 
a problem for phylogenetic inference? Systematic Biology 52, 124. 440 

Huang, D., Huang, C., Hefer, N., Kolosova, C., Douglas, Q.C.B., Cronk, 2014a. Whole 441 
plastome sequencing reveals deep plastid divergence and cytonuclear discordance between 442 
closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). New 443 
Phytologist 204, 693-703. 444 

Huang, H., Shi, C., Lui, Y., Mao, S.-Y., Gao, L.-Z., 2014b. Thirteen Camellia 445 
chloroplast genome sequences determined by high-throughput sequencing: genome structure 446 
and phylogenetic relationships. BMC Evolutionary Biology 14. 447 

Huelsenbeck, J.P., 1991. When are fossils better than extant taxa in phylogenetic 448 
analysis? Systematic Biology 40, 458-469. 449 

Jansen, R.K., Cai, Z., Raubeson, L.A., Daniell, H., dePamphilis, C.W., Leebens-Mack, 450 
J., Müller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., Chumley, T.W., Lee, 451 
S.-B., Rhiannon, P., McNeal, J.R., Kuehl, J.V., Boore, J.L., 2007. Analysis of 81 genes from 452 
64 plastid genomes resolves relationships in angiosperms and identifies genome-scale 453 
evolutionary patterns. Proceedings of the National Academy of Sciences of the United States 454 
of America 104, 19369-19374. 455 

Jobes, D.V., Hurley, D.L., Thien, L.B., 1995. Plant DNA isolation: a method to 456 
efficiently remove polyphenolics, polysaccharides, and RNA. Taxon 44, 379-386. 457 

Kane, N., Sveinsson, S., Dempewolf, H., Yang, J.Y., Zhang, D., Engels, J.M.M., Cronk, 458 
Q., 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast 459 
genomes and nuclear ribosomal DNA. American Journal of Botany 99, 320-329. 460 

Katoh, K., Misawa, K., Kuma, K.i., Miyata, T., 2002. MAFFT: a novel method for rapid 461 
multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 462 
3059-3066. 463 

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., 464 
Salzberg, S.L., 2004. Versatile and open software for comparing large genomes. Genome 465 
Biology 5, R12. 466 

Lemmon, A.R., Brown, J.M., Stanger-Hall, K., Lemmon, E.M., 2009. The effect of 467 
ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian 468 
inference. Systematic Biology 58, 130-145. 469 

Lin, C.-P., Huang, J.-P., Wu, C.-S., Hsu, C.-Y., Chaw, S.-M., 2010. Comparative 470 
chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome 471 
Biology and Evolution 2, 504-517. 472 

Liston, A., Parker‐Defeniks, M., Syring, J.V., Willyard, A., Cronn, R., 2007. 473 
Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: a case 474 
study in Pinus lambertiana. Molecular Ecology 16, 3926-3937. 475 

Magoc, T., Salzberg, S., 2011. FLASH: Fast length adjustment of short reads to improve 476 
genome assemblies. Bioinformatics 27, 2957-2963. 477 

Maslin, B.R., Miller, J.T., Seigler, D.S., 2003. Overview of the generic status of Acacia 478 
(Leguminosae: Mimosoideae). Australian Systematic Botany 16, 1-18. 479 



20 
 

Midgley, S.J., Turnbull, J.W., 2003. Domestication and use of Australian acacias: case 480 
studies of five important species. Australian Systematic Botany 16, 89-102. 481 

Miller, J.T., Andrew, R., Bayer, R.J., 2003. Molecular phylogenetics of the Australian 482 
acacias of subg. Phyllodineae (Fabaceae: Mimosoideae) based on the trnK intron. Australian 483 
Journal of Botany 51, 167-177. 484 

Miller, J.T., Bayer, R.J., 2001. Molecular phylogenetics of Acacia (Fabaceae: 485 
Mimosoideae) based on the chloroplast matK coding sequence and flanking trnK intron 486 
spacer regions. American Journal of Botany 88, 697-705. 487 

Miller, J.T., Bayer, R.J., 2003. Molecular phylogenetics of Acacia subgenera Acacia and 488 
Aculeiferum (Fabaceae: Mimosoideae), based on the chloroplast matK coding sequence and 489 
flanking trnK intron spacer regions. Australian Systematic Botany 16, 27-33. 490 

Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway 491 
for inference of large phylogenetic trees. Gateway Computing Environments Workshop 492 
(GCE), 2010. IEEE, pp. 1-8. 493 

Mishler, B.D., Knerr, N., Gonzalez Orozco, C.E., Thornhill, A.H., Laffan, S.W., Miller, 494 
J.T., 2014. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian 495 
Acacia. Nature Communications. 496 

Mitchell, A., Mitter, C., Regier, J.C., 2000. More taxa or more characters revisited: 497 
combining data from nuclear protein-encoding genes for phylogenetic analyses of Noctuoidea 498 
(Insecta: Lepidoptera). Systematic Biology 49, 202-224. 499 

Moncalvo, J.-M., Vilgalys, R., Redhead, S.A., Johnson, J.E., James, T.Y., Catherine 500 
Aime, M., Hofstetter, V., Verduin, S.J.W., Larsson, E., Baroni, T.J., Greg Thorn, R., 501 
Jacobsson, S., Clémençon, H., Miller Jr, O.K., 2002. One hundred and seventeen clades of 502 
euagarics. Molecular Phylogenetics and Evolution 23, 357-400. 503 

Murphy, D.J., Brown, G.K., Miller, J.T., Ladiges, P.Y., 2010. Molecular phylogeny of 504 
Acacia Mill.(Mimosoideae: Leguminosae): evidence for major clades and informal 505 
classification. Taxon, 7-19. 506 

Murphy, D.J., Miller, J.T., Bayer, R.J., Ladiges, P.Y., 2003. Molecular phylogeny of 507 
Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the 508 
internal transcribed spacer region. Australian Systematic Botany 16, 19-26. 509 

Murphy, D.J., Udovicic, F., Ladiges, P.Y., 2000. Phylogenetic analysis of Australian 510 
Acacia (Leguminosae: Mimosoideae) by using sequence variations of an intron and two 511 
intergenic spacers of chloroplast DNA. Australian Systematic Botany 13, 745-754. 512 

Nabhan, A.R., Sarkar, I.N., 2012. The impact of taxon sampling on phylogenetic 513 
inference: a review of two decades of controversy. Briefings in Bioinformatics 13, 122-134. 514 

Nikiforova, S.V., Cavalieri, D., Velasco, R., Goremykin, V., 2013. Phylogenetic 515 
analysis of 47 chloroplast genomes clarifies the contribution of wild species to the 516 
domesticated apple maternal line. Molecular Biology and Evolution 30, 1751-1760. 517 

Parks, M., Cronn, R., Liston, A., 2009. Increasing phylogenetic resolution at low 518 
taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology 519 
7, 84. 520 



21 
 

Peterson, K.J., Eernisse, D.J., 2001. Animal phylogeny and the ancestry of bilaterians: 521 
inferences from morphology and 18S rDNA gene sequences. Evolution & Development 3, 522 
170-205. 523 

Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T.J., Manuel, M., Wörheide, 524 
G., Baurain, D., 2011. Resolving difficult phylogenetic questions: why more sequences are 525 
not enough. PLoS Biol 9, e1000602. 526 

Richardson, D.M., Rejmánek, M., 2011. Trees and shrubs as invasive alien species – a 527 
global review. Diversity and Distributions 17, 788-809. 528 

Rokas, A., Carroll, S.B., 2005. More genes or more taxa? The relative contribution of 529 
gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution 530 
22, 1337-1344. 531 

Rosenberg, M.S., Kumar, S., 2001. Incomplete taxon sampling is not a problem for 532 
phylogenetic inference. Proceedings of the National Academy of Sciences of the United 533 
States of America 98, 10751-10756. 534 

Rosenberg, M.S., Kumar, S., 2003. Taxon sampling, bioinformatics, and 535 
phylogenomics. Systematic Biology 52, 119-124. 536 

Roure, B., Baurain, D., Philippe, H., 2013. Impact of missing data on phylogenies 537 
inferred from empirical phylogenomic data sets. Molecular biology and evolution 30, 197-538 
214. 539 

Ruhsam, M., Rai, H.S., Mathews, S., Ross, T.G., Graham, S.W., Raubeson, L.A., Mei, 540 
W., Thomas, P.I., Gardner, M.F., Ennos, R.A., 2015. Does complete plastid genome 541 
sequencing improve species discrimination and phylogenetic resolution in Araucaria? 542 
Molecular Ecology Resources. 543 

Sanderson, M.J., McMahon, M.M., Steel, M., 2010. Phylogenomics with incomplete 544 
taxon coverage: the limits to inference. BMC Evolutionary Biology 10, 155. 545 

Simmons, M.P., Pickett, K.M., Miya, M., 2004. How meaningful are Bayesian support 546 
values? Molecular Biology and Evolution 21, 188-199. 547 

Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-548 
analysis of large phylogenies. Bioinformatics 30, 1312-1313. 549 

Sul, S.-J., Williams, T.L., 2007. A randomized algorithm for comparing sets of 550 
phylogenetic trees. APBC, pp. 121-130. 551 

Sul, S.-J., Williams, T.L., 2008. An experimental analysis of robinson-foulds distance 552 
matrix algorithms. Algorithms-ESA 2008. Springer, pp. 793-804. 553 

Syring, J., Farrell, K., Businský, R., Cronn, R., Liston, A., 2007. Widespread 554 
genealogical nonmonophyly in species of Pinus subgenus Strobus. Systematic Biology 56, 555 
163-181. 556 

Taberlet, P., Gielly, L., Pautou, G., Bouvet, J., 1991. Universal primers for amplification 557 
of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17, 1105-1109. 558 

Thomson, L.A.J., Turnbull, J.W., Maslin, B.R., 1994. The utilization of Australian 559 
species of Acacia, with particular reference to those of the subtropical dry zone. Journal of 560 
Arid Environments 27, 279-295. 561 



22 
 

Wang, X.-R., Tsumura, Y., Yoshimaru, H., Nagasaka, K., Szmidt, A.E., 1999. 562 
Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, 563 
matK, rpl20-rps18 spacer, and trnV intron sequences. American Journal of Botany 86, 1742-564 
1753. 565 

Waters, D.L.E., Nock, C.J., Ishikawa, R., Rice, N., Henry, R.J., 2012. Chloroplast 566 
genome sequence confirms distinctness of Australian and Asian wild rice. Ecology and 567 
Evolution 2, 211-217. 568 

Whittall, J.B., Syring, J., Parks, M., Buenrostro, J., Dick, C., Liston, A., Cronn, R., 569 
2010. Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare 570 
and widespread pines. Molecular Ecology 19, 100-114. 571 

Wiens, J.J., 2003a. Incomplete taxa, incomplete characters, and phylogenetic accuracy: 572 
is there a missing data problem? Journal of Vertebrate Paleontology 23, 297-310. 573 

Wiens, J.J., 2003b. Missing data, incomplete taxa, and phylogenetic accuracy. 574 
Systematic Biology 52, 528-538. 575 

Wiens, J.J., 2005. Can incomplete taxa rescue phylogenetic analyses from long-branch 576 
attraction? Systematic Biology 54, 731-742. 577 

Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G., Jr, J.W.S., 578 
2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: 579 
molecular data change the placement of fossil taxa. Systematic Biology 59, 674-688. 580 

Wiens, J.J., Moen, D.S., 2008. Missing data and the accuracy of Bayesian 581 
phylogenetics. Journal of Systematics and Evolution 46, 307-314. 582 

Wiens, J.J., Tiu, J., 2012. Highly incomplete taxa can rescue phylogenetic analyses from 583 
the negative impacts of limited taxon sampling. PLoS ONE 7, e42925. 584 

Yang, J.-B., Tang, M., Li, H.-T., Zhang, Z.-R., Li, D.-Z., 2013. Complete chloroplast 585 
genome of the genus Cymbidium: lights into the species identification, phylogenetic 586 
implications and population genetic analyses. BMC evolutionary biology 13, 84. 587 

Zerbino, D.R., Birney, E., 2008. Velvet: algorithms for de novo short read assembly 588 
using de Brujin graphs. Genome Research 18, 821-829. 589 

Zhang, Y.-J., Ma, P.-F., Li, D.-Z., 2011. High-throughput sequencing of six bamboo 590 
chloroplast genomes: phylogenetic implication for temperate woody bamboos (Poaceae: 591 
Bambusoideae). PLoS ONE 6, e20596. 592 

Zwickl, D.J., Hillis, D.M., 2002. Increased taxon sampling greatly reduces phylogenetic 593 
error. Systematic Biology 51, 588-598. 594 

 595 

596 



23 
 

Figures 597 

Figure 1: Bayesian phylogenetic reconstruction using (a) the alignment of Mishler et al. 598 

(2014) and (b) the whole chloroplast genome alignments, of only the taxa present in both 599 

studies. Numbers at nodes indicate posterior probabilities. 600 

 601 

Figure 2: Phylogenetic trees of all 606 integrated specimens across (a) four chloroplast 602 

loci and two nuclear ribosomal loci using RAxML (small amplicon sequence analysis); whole 603 

chloroplast genomes for 96 individuals, and four chloroplast loci and two nuclear ribosomal 604 

loci for 510 individuals analysed in a super matrix analysis using (b) RAxML or (c) 605 

ExaBayes; and (d) four chloroplast loci and two nuclear ribosomal loci using the whole 606 

chloroplast genome phylogeny (Appendix F) as a constraint. 607 

 608 

Figure 3: Positions of the 15 minor clades within each of the integrated analyses, 609 

including (a) the six locus small amplicon sequence tree; (b) the RAxML super matrix 610 

analysis; (c) the ExaBayes super matrix analysis; and (d) the constraint tree, as well as (e) the 611 

whole genome phylogeny. Values at nodes represent posterior probabilities in (c) and (e), and 612 

maximum likelihood bootstrapping values in (a), (b) and (d). Solid lines indicate branches 613 

with high (above 95% support) while dotted lines indicate lower support. 614 

615 



24 
 

Table 1: Robinson-Foulds distances between each of the combined phylogenies calculated 616 
using HashRF. 617 

 Amplicon Super 
(RAxML) 

Super 
(ExaBayes) Constraint 

Amplicon 0    

Super (RAxML) 166 0   

Super (ExaBayes) 216 200 0  

Constraint 144 150 217 0 

 618 
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Appendix A: Specimens used in this study including collection locations and herbarium 

voucher numbers. Vouchers marked “PERTH” are held at the Western Australian Herbarium 

(Kensington, Western Australia) while all others are held at The University of Western 

Australia Herbarium (Crawley, Western Australia). 

Species Latitude Longitude 
Voucher 

number 

Acacia acanthoclada subsp. glaucescens Maslin -29.18979 116.95141 Williams 568 

Acacia acuaria W.Fitzg. -30.2853 116.9554 Williams 496 

Acacia acuminata Benth. -31.09257 120.6918 Williams 279 

Acacia acuminata Benth. -29.55589 116.90052 Williams 601 

Acacia ampliata R.S.Cowan & Maslin -28.583333 115.483333 
PERTH 

07018231 

Acacia andrewsii W. Fitzg. -27.45143 114.69132 Williams 244 

Acacia anthochaera Maslin -30.0688 117.425 Williams 521 

Acacia anthochaera Maslin -31.96458 115.83852 Williams 620 

Acacia ashbyae Maslin -31.95397 115.83672 Williams 026 

Acacia assimilis S.Moore subsp. assimilis -29.307028 116.730354 Williams 013 

Acacia assimilis S.Moore subsp. assimilis -30.2866 116.5924 Williams 490 

Acacia aulacophylla R.S.Cowan & Maslin -29.50072 116.99813 Williams 608 

Acacia blakelyi Maiden -30.3115 116.4497 Williams 488 

Acacia burkittii Benth. -29.070175 116.814011 Williams 009 

Acacia burkittii Benth. -29.7837 116.7762 Williams 541 

Acacia cerastes Maslin -29.677 117.02599 Williams 592 

Acacia colletioides Benth. -29.61772 116.96724 Williams 585 

Acacia coolgardiensis Maiden -29.51122 116.91828 Williams 603 

Acacia cyclops G.Don -31.99823 115.75253 Williams 004 

Acacia daphnifolia Meisn. -29.879167 116.03 
PERTH 

05689414 

Acacia diallaga Madlin & Buscumb -29.1497 116.96993 Williams 552 

Acacia duriuscula W.Fitzg. -29.68959 116.91246 Williams 589 

Acacia effusifolia Maslin & Buscumb -29.21036 116.663506 Williams 006 

Acacia effusifolia Maslin & Buscumb -29.196028 116.774028 Williams 030 

Acacia eremaea C.R.P.Andrews -30.367 117.1934 Williams 527 

Acacia erinacea Benth. -30.51345 121.38813 Williams 308 

Acacia erinacea Benth. -29.18909 116.94986 Williams 567 

Acacia exocarpoides W.Fitzg. -29.305696 116.732933 Williams 011 

Acacia exocarpoides W.Fitzg -31.96709 115.83752 Williams 621 

Acacia formidabilis R.S.Cowan & Maslin -29.51794 117.02118 Williams 611 

Acacia fragilis Maiden & Blakely -30.2853 116.9551 Williams 497 

Acacia gibbosa R.S.Cowan & Maiden -30.0973 117.3957 Williams 524 

Acacia hemiteles Benth. -31.10609 120.73764 Williams 285 

Acacia hemiteles Benth. -30.2853 116.9554 Williams 495 

Acacia heteroclita Meisn. subsp. heteroclita -32.549722 118.146667 PERTH 



06834914 

Acacia inceana subsp. conformis R.S.Cowan & Maslin -29.50682 116.9507 Williams 606 

Acacia inceana subsp. conformis R.S.Cowan & Maslin -30.3807 117.4111 Williams 537 

Acacia jennerae Maiden -31.2743 119.81621 Williams 274 

Acacia jibberdingensis Maiden & Blakely -30.0885 117.387222 Williams 029 

Acacia jibberdingensis Maiden & Blakely -31.9641 115.83834 Williams 617 

Acacia karina Maslin & Buscumb -29.14881 116.96901 Williams 553 

Acacia karina Maslin & Buscumb -29.19423 116.97187 Williams 564 

Acacia kochii Ewart & Jean White -29.318333 117.387667 
PERTH 

07435838 

Acacia lasiocalyx C.R.P.Andrews -31.22075 121.46321 Williams 321 

Acacia lasiocalyx C.R.P.Andrews -31.96373 115.83798 Williams 615 

Acacia ligulata Benth. -26.1445 121.077889 
PERTH 

07807864 

Acacia lineolata Benth. subsp. lineolata -31.2208 121.46406 Williams 320 

Acacia longiphyllodinea Maiden -30.4193 116.962 Williams 505 

Acacia longiphyllodinea Maiden -31.96424 115.83853 Williams 618 

Acacia longispinea Morrison -30.2853 116.9554 Williams 494 

Acacia longispinea Morrison -29.0807 116.90716 Williams 574 

Acacia merrallii F.Muell. -31.267 119.81605 Williams 272 

Acacia merrallii F.Muell. -30.274 116.6684 Williams 510 

Acacia murrayana Benth. -27.82636 115.39928 Williams 240 

Acacia murrayana Benth. -31.00187 121.27076 Williams 322 

Acacia neurophylla subsp. erugata R.S.Cowan & Maslin -27.64887 114.45508 Williams 259 

Acacia neurophylla subsp. erugata R.S.Cowan & Maslin -30.4285 116.9666 Williams 508 

Acacia obtecta Maiden & Blakely -30.021833 117.438972 
PERTH 

06876366 

Acacia oldfieldii F.Muell. -27.78858 114.46806 Williams 248 

Acacia oldfieldii F.Muell. -27.789167 114.466944 
PERTH 

06234194 

Acacia prainii Maiden -29.61753 116.96766 Williams 586 

Acacia puncticulata Maslin -27.75514 114.36212 Williams 256 

Acacia ramulosa W.Fitzg. var. ramulosa  -27.64912 114.45499 Williams 258 

Acacia resinimarginea W.Fitzg. -31.09191 120.69183 Williams 281 

Acacia resinimarginea W.Fitzg. -30.3723 117.2687 Williams 530 

Acacia resinimarginea W.Fitzg. -29.61439 117.03455 Williams 594 

Acacia resinosa R.S.Cowan & Maslin -30.2853 116.9283 Williams 493 

Acacia resinosa R.S.Cowan & Maslin -29.51634 117.02502 Williams 612 

Acacia restiacea Benth. -30.4198 116.9622 Williams 506 

Acacia restiacea Benth. -31.96441 115.83857 Williams 619 

Acacia rostellifera Benth. -28.49665 114.62603 Williams 234 

Acacia rostellifera Benth. -29.52686 117.02173 Williams 614 

Acacia scalena Maslin -30.4328 116.9617 Williams 507 



Acacia scirpifolia Meisn. -27.74849 114.36269 Williams 253 

Acacia scleroclada Maslin -27.716722 117.089167 
PERTH 

07769776 

Acacia sclerosperma F.Muell. subsp. scleropsperma -27.82822 115.39806 Williams 242 

Acacia sclerosperma  F.Muell. subsp. sclerosperma -30.2739 116.6684 Williams 509 

Acacia sibina Maslin -29.21036 116.663506 Williams 005 

Acacia stanleyi Maslin -30.088194 117.386056 Williams 031 

Acacia stereophylla Meisn. var. stereophylla -30.2854 116.9551 Williams 499 

Acacia sulcaticaulis Maslin & Buscumb -29.18542 116.97486 Williams 570 

Acacia tetragonophylla F.Muell. -28.49693 114.62574 Williams 236 

Acacia tetragonophylla F.Muell. -30.96193 121.1562 Williams 297 

Acacia tetragonophylla F.Muell. -30.4362 117.3859 Williams 538 

Acacia tetragonophylla F.Muell. -29.14643 116.9669 Williams 560 

Acacia tysonii Luehm. -29.260944 116.020167 
PERTH 

06876358 

Acacia umbraculiformis Maslin & Buscumb -29.188056 116.921056 Williams 008 

Acacia uncinella Benth. -31.0919 120.69177 Williams 280 

Acacia websteri Maiden & Blakely -30.95761 121.02514 Williams 301 

Acacia woodmaniorum Maslin & Buscumb -29.141117 116.883064 Williams 007 

Acacia xanthina Benth. -32.01546 115.76039 Williams 001 

Acacia xanthina Benth. -31.95417 115.83678 Williams 027 

Acacia yorkrakinensis subsp. acrita R.S.Cowan & Maslin -31.09177 120.69211 Williams 283 

Acacia yorkrakinensis subsp. acrita R.S.Cowan & Maslin -30.9586 117.1154 Williams 543 

Pararchidendron pruinosum (Benth.) I.C.Nielsen -31.955242 115.843003 Williams 028 

Paraserianthes lophantha (Willd.) I.C.Nielsen subsp. 

lophantha 
-31.917545 115.798813 Williams 032 

 

 



Appendix B: ID number, species name, ENA accession number, number of reads produced 

using Illumina HiSeq2000 sequencing, number of contigs generated using Velvet, assembled 

length of the chloroplast genome and percentage identity with the Acacia ligulata reference 

chloroplast genome for each specimen used in this study. 

# Specimen 
ENA 

accession 

Number 

reads 
Contigs 

Assembled 

length (bp) 

PI% with 

Acacia 

ligulata 

001 Acacia xanthina Benth. LN885329 3,830,703 40 174,359 98.4 

004 Acacia cyclops G.Don LN885258 1,971,156 36 175,320 92.8 

005 Acacia sibina Maslin LN885316 1,733,214 34 175,276 92.7 

006 
Acacia effusifolia Maslin & 

Buscumb 
LN885262 1,317,856 43 175,367 92.1 

007 
Acacia woodmaniorum Maslin 

& Buscumb 
LN885328 3,618,885 45 172,588 88.1 

008 
Acacia umbraculiformis 

Maslin & Buscumb 
LN885325 2,400,060 39 175,596 92.6 

009 Acacia burkittii Benth. LN885253 2,298,474 34 174,711 91.3 

011 Acacia exocarpoides W.Fitzg. LN885267 1,711,739 43 173,733 87 

013 
Acacia assimilis S.Moore 

subsp. assimilis 
LN885249 613,200 45 173,316 89.3 

014 Acacia tysonii Luehm. LN885324 3,173,818 50 176,254 97.7 

015 Acacia scleroclada Maslin LN885313 4,041,457 67 172,875 88.1 

017 Acacia oldfieldii F.Muell. LN885297 1,612,955 60 174,937 90.7 

018 
Acacia obtecta Maiden & 

Blakely 
LN885296 694,025 42 175,857 91.1 

021 
Acacia kochii Ewart & Jean 

White 
LN885282 1,386,421 47 173,440 91.6 

022 
Acacia heteroclita Meisn. 

subsp. heteroclita 
LN885274 1,389,033 47 173,268 90 

023 Acacia daphnifolia Meisn. LN885259 2,895,801 52 174,886 90.5 

024 
Acacia ampliata R.S.Cowan & 

Maslin 
LN885244 2,506,957 31 175,297 93.1 

026 Acacia ashbyae Maslin LN885248 2,466,871 39 174,020 98.5 

027 Acacia xanthina Benth. LN885330 2,792,320 42 175,889 97.2 

028 
Pararchidendron pruinosum 

(Benth.) I.C.Nielsen 
LN885333 1,424,066 35 158,986 78.1 

029 
Acacia jibberdingensis 

Maiden & Blakely 
LN885278 2,081,415 39 177,334 92 

030 
Acacia effusifolia Maslin & 

Buscumb 
LN885263 2,122,879 30 176,478 92.7 

031 Acacia stanleyi Maslin LN885317 1,472,498 18 175,246 90.3 

032 

Paraserianthes lophantha 

(Willd.) I.C.Nielsen subsp. 

lophantha 

LN885334 1,619,793 41 160,052 78.4 

234 Acacia rostellifera Benth. LN885309 2,182,983 45 176,285 96.6 

236 
Acacia tetragonophylla 

F.Muell. 
LN885320 1,542,388 36 174,645 89.5 

240 Acacia murrayana Benth. LN885292 1,013,600 35 175,408 91.8 

242 
Acacia sclerosperma F.Muell. 

subsp. scleropsperma 
LN885314 2,490,236 40 175,243 96.6 

244 Acacia andrewsii W. Fitzg. LN885245 1,607,420 35 176,784 92 

248 Acacia oldfieldii F.Muell. LN885298 1,695,383 34 174,797 90.2 



253 Acacia scirpifolia Meisn. LN885312 2,628,588 36 175,887 90.7 

256 Acacia puncticulata Maslin LN885300 1,172,986 25 173,905 88.9 

258 
Acacia ramulosa W.Fitzg. var. 

ramulosa 
LN885301 2,578,531 34 175,238 92 

259 

Acacia neurophylla subsp. 

erugata R.S.Cowan & 

Maslin 

LN885294 3,718,413 52 174,628 92.1 

272 Acacia merrallii F.Muell. LN885290 662,007 30 174,916 90 

274 Acacia jennerae Maiden LN885277 1,398,603 39 173,866 90.2 

279 Acacia acuminata Benth. LN885242 1,159,144 12 174,238 89.4 

280 Acacia uncinella Benth. LN885326 2,201,447 37 173,482 89.8 

281 
Acacia resinimarginea 

W.Fitzg. 
LN885302 1,941,966 34 174,758 91.5 

283 

Acacia yorkrakinensis subsp. 

acrita R.S.Cowan & 

Maslin 

LN885331 1,065,647 34 175,155 92.5 

285 Acacia hemiteles Benth. LN885272 2,322,134 37 175,055 91.6 

297 
Acacia tetragonophylla 

F.Muell. 
LN885321 3,361,288 59 174,115 89.8 

301 
Acacia websteri Maiden & 

Blakely 
LN885327 1,670,247 30 175,163 91.8 

308 Acacia erinacea Benth. LN885265 1,879,367 45 175,277 82.9 

320 
Acacia lineolata Benth. subsp. 

lineolata 
LN885285 1,290,586 37 174,839 89.3 

321 
Acacia lasiocalyx 

C.R.P.Andrews 
LN885283 1,176,444 37 174,493 91.3 

322 Acacia murrayana Benth. LN885293 1,323,170 32 175,712 92.4 

488 Acacia blakelyi Maiden LN885252 1,603,436 22 175,441 90.9 

490 
Acacia assimilis S.Moore 

subsp. assimilis 
LN885250 978,448 42 175,226 88.9 

493 
Acacia resinosa R.S.Cowan & 

Maslin 
LN885305 3,009,912 34 175,927 92.1 

494 Acacia longispinea Morrison LN885288 2,404,180 40 175,221 90.3 

495 Acacia hemiteles Benth. LN885273 2,071,909 35 173,964 91.5 

496 Acacia acuaria W.Fitzg. LN885241 1,821,446 33 173,782 86.3 

497 
Acacia fragilis Maiden & 

Blakely 
LN885270 2,059,604 46 174,069 90 

499 
Acacia stereophylla Meisn. 

var. stereophylla 
LN885318 780,668 35 174,719 91.8 

505 
Acacia longiphyllodinea 

Maiden 
LN885286 2,014,232 39 175,190 91.5 

506 Acacia restiacea Benth. LN885307 3,671,253 45 173,222 87.6 

507 Acacia scalena Maslin LN885311 2,762,554 45 176,851 85.9 

508 

Acacia neurophylla subsp. 

erugata R.S.Cowan & 

Maslin 

LN885295 1,744,125 38 174,679 91.7 

509 
Acacia sclerosperma  F.Muell. 

subsp. sclerosperma 
LN885315 1,547,970 22 175,368 96.2 

510 Acacia merrallii F.Muell. LN885291 1,094,617 34 174,397 91.9 

521 Acacia anthochaera Maslin LN885246 2,910,804 40 173,720 92.3 

524 
Acacia gibbosa R.S.Cowan & 

Maiden 
LN885271 1,640,151 34 177,419 91.9 

527 
Acacia eremaea 

C.R.P.Andrews 
LN885264 1,718,792 33 174,238 91.8 

530 
Acacia resinimarginea 

W.Fitzg. 
LN885303 1,542,336 36 174,871 91.8 



537 

Acacia inceana subsp. 

conformis R.S.Cowan & 

Maslin 

LN885275 405,245 41 175,011 90.6 

538 
Acacia tetragonophylla 

F.Muell. 
LN885322 3,627,752 49 174,410 89.4 

541 Acacia burkittii Benth. LN885254 1,819,580 13 173,921 90 

543 

Acacia yorkrakinensis subsp. 

acrita R.S.Cowan & 

Maslin 

LN885332 2,001,053 34 174,876 92.5 

552 
Acacia diallaga Madlin & 

Buscumb 
LN885260 2,767,182 37 176,123 91.9 

553 
Acacia karina Maslin & 

Buscumb 
LN885280 1,092,043 37 176,185 91.1 

560 
Acacia tetragonophylla 

F.Muell. 
LN885323 1,219,136 34 174,985 89.3 

564 
Acacia karina Maslin & 

Buscumb 
LN885281 637,643 37 175,058 90 

567 Acacia erinacea Benth. LN885266 990,844 47 174,732 83 

568 
Acacia acanthoclada subsp. 

glaucescens Maslin 
LN885240 1,566,088 55 174,749 85.4 

570 
Acacia sulcaticaulis Maslin & 

Buscumb 
LN885319 1,720,677 30 175,136 91.6 

574 Acacia longispinea Morrison LN885289 1,909,845 46 175,602 90.7 

585 Acacia colletioides Benth. LN885256 2,792,984 34 176,817 92.1 

586 Acacia prainii Maiden LN885299 2,579,014 39 175,472 91.7 

589 Acacia duriuscula W.Fitzg. LN885261 461,049  175,605 91.6 

592 Acacia cerastes Maslin LN885255 1,701,044 65 173,793 87.1 

594 
Acacia resinimarginea 

W.Fitzg. 
LN885304 899,241 36 174,684 91.2 

601 Acacia acuminata Benth. LN885243 1,699,840 10 174,282 89.6 

603 Acacia coolgardiensis Maiden LN885257 633,187 36 174,741 91.8 

606 

Acacia inceana subsp. 

conformis R.S.Cowan & 

Maslin 

LN885276 716,683 42 175,082 90 

608 
Acacia aulacophylla 

R.S.Cowan & Maslin 
LN885251 2,468,372 43 173,215 88.2 

611 
Acacia formidabilis 

R.S.Cowan & Maslin 
LN885269 1,185,416 37 173,894 90.1 

612 
Acacia resinosa R.S.Cowan & 

Maslin 
LN885306 2,109,674 40 175,046 92 

614 Acacia rostellifera Benth. LN885310 1,657,690 41 175,208 96.5 

615 
Acacia lasiocalyx 

C.R.P.Andrews 
LN885284 1,696,568 41 174,833 91.8 

617 
Acacia jibberdingensis 

Maiden & Blakely 
LN885279 1,848,284 41 178,309 91.6 

618 
Acacia longiphyllodinea 

Maiden 
LN885287 1,778,076 36 175,529 91.8 

619 Acacia restiacea Benth. LN885308 3,528,837 49 173,695 87.2 

620 Acacia anthochaera Maslin LN885247 1,435,546 42 173,093 92.1 

621 Acacia exocarpoides W.Fitzg LN885268 1,481,765 44 174,462 71 
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