92 research outputs found

    Greater Sage-Grouse and Community Responses to Strategies to Mitigate Environmental Resistance in an Anthropogenic Altered Sagebrush Landscape

    Get PDF
    Sagebrush (Artemisia spp.) ecosystems are diverse habitats found throughout western North America. Anthropogenic disturbances has resulted in the loss of over half of the sagebrush ecosystems impacting sagebrush obligate species such as sage-grouse (Centrocercus spp.). Federal, state, and private land managers have implemented landscape scale mechanical pinyon (Pinus spp.) and juniper (Juniperus spp.; conifer) removal projects in an effort to restore functioning sagebrush communities to benefit sage-grouse. However, few studies have investigated the potential for using large-scale conifer treatments to mitigate factors impeding sage-grouse seasonal movements and space-use in anthropogenic altered landscapes. To address this management need, I analyzed pre- and post-treatment vegetation composition data and annual changes in percent cover for known conifer treatments completed from 2008-2014 in Box Elder County, Utah, USA. I developed a multivariate generalized linear regression model that predicts future landscape conditions for sage-grouse and projects tree canopy cover that approximated observed cover values for known treated plots at time of treatment and five years post-treatment. Next, I analyzed five different management scenarios to predict resource selection by greater sage-grouse (Centrocercus urophasianus) in response to changes in habitat following conifer treatments. I used a Relative Selection Strength (RSS) framework to quantify the net habitat gain from 2017 to 2023. My top ranked treatment scenario showed net habitat gains across all categories. Additionally, I investigated the efficacy of global position system (GPS) and very high frequency (VHF) transmitters used in range wide studies. I compared mortality rates for two separate Utah populations. Across summer and winter for sex, and spring, summer and winter for age, I documented higher mortality for sage-grouse marked with GPS transmitters. Lastly, to assess stakeholders’ perceptions of contemporary community-based conservation efforts, I conducted a case study in fall 2019 of the West Box Elder Coordinated Resource Management (CRM). Respondents reported: participation by federal and state agencies was paramount for funding and program structure, trust has been enhance, and landowner involvement is necessary for long-term stability and persistence

    Bjerknes-like Compensation in the Wintertime North Pacific

    Get PDF
    Observational and model evidence has been mounting that mesoscale eddies play an important role in air–sea interaction in the vicinity of western boundary currents and can affect the jet stream storm track. What is less clear is the interplay between oceanic and atmospheric meridional heat transport in the vicinity of western boundary currents. It is first shown that variability in the North Pacific, particularly in the Kuroshio Extension region, simulated by a high-resolution fully coupled version of the Community Earth System Model matches observations with similar mechanisms and phase relationships involved in the variability. The Pacific decadal oscillation (PDO) is correlated with sea surface height anomalies generated in the central Pacific that propagate west preceding Kuroshio Extension variability with a ~3–4-yr lag. It is then shown that there is a near compensation of O(0.1) PW (PW ≡ 10^(15) W) between wintertime atmospheric and oceanic meridional heat transport on decadal time scales in the North Pacific. This compensation has characteristics of Bjerknes compensation and is tied to the mesoscale eddy activity in the Kuroshio Extension region

    Spatial patterns and intensity of the surface storm tracks in CMIP5 models

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 4965-4981, doi:10.1175/JCLI-D-16-0228.1.To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.JFB was partially supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections program (Grant NA15OAR4310094). Y-OK was supported by NSF Division of Atmospheric and Geospace Science Climate and Large-scale Dynamics Program (AGS-1355339), NASA Physical Oceanography Program (NNX13AM59G), and DOE Office of Biological and Environmental Research Regional and Global Climate Modeling Program (DE-SC0014433). RJS was supported by DOE Office of Biological and Environmental Research (DE-SC0006743) and NSF Directorate for Geosciences Division of Ocean Sciences (1419584),2017-10-0

    Damping of tropical instability waves caused by the action of surface currents on stress

    Get PDF
    Ocean eddies and fronts affect surface stress via two mechanisms: (1) ocean surface currents altering the relative motion between air and sea and, hence, the stress fields and (2) ocean sea surface temperature (SST) gradients forcing changes in stability and near-surface winds. In this paper, we quantify the first effect and how it impacts Tropical Instability Waves (TIW) in the eastern Pacific. High-resolution satellite data and a regional coupled model are used to distinguish between stress changes due to the surface currents and those due to the changes in stability and near-surface winds. It is found that both mechanisms affect the surface stress curl, but they do so at different latitudes, allowing for their effect on Ekman pumping to be distinguished. The Ekman pumping due to the surface current effect alone, leads to significant damping of the TIWs. In terms of the eddy kinetic energy, the inclusion of surface current in the stress leads to decay with an e-folding time comparable with the period of the TIWs. It is, thus, an important damping mechanism to be included in ocean and coupled ocean-atmosphere models

    Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Light, C., Arbic, B., Martin, P., Brodeau, L., Farrar, J., Griffies, S., Kirtman, B., Laurindo, L., Menemenlis, D., Molod, A., Nelson, A., Nyadjro, E., O’Rourke, A., Shriver, J., Siqueira, L., Small, R., & Strobach, E. Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models. Climate Dynamics, (2022): 1–27, https://doi.org/10.1007/s00382-022-06257-6.High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018. https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations.Support for CXL’s effort on this project was provided by a Research Experiences for Undergraduates (REU) supplement for National Science Foundation (NSF) grant OCE-1851164 to BKA, which also provided partial support for PEM. In addition, BKA acknowledges NSF grant OCE-1351837, which provided partial support for AKO, Office of Naval Research grant N00014-19-1-2712 and NASA grants NNX17AH55G, which also provided partial support for ADN, and 80NSSC20K1135. JTF’s participation, and the SPURS-II buoy data, were funded by NASA grants 80NSSC18K1494 and NNX15AG20G
    • 

    corecore