16 research outputs found
Probabilistically time-analyzable complex processors in hard real- time systems
Critical Real-Time Embedded Systems (CRTES) feature
performance-demanding functionality. High-performance hardware
and complex software can provide such functionality, but the use of
aggressive technology challenges time-predictability. Our work
focuses on the investigation and development of (1) hardware
mechanisms to control inter-task interferences in shared timerandomized
caches and (2) manycore network-on-chip designs
meeting the requirements of Probabilistic Timing Analysis (PTA)
Probabilistically time-analyzable complex processors in hard real- time systems
Critical Real-Time Embedded Systems (CRTES) feature
performance-demanding functionality. High-performance hardware
and complex software can provide such functionality, but the use of
aggressive technology challenges time-predictability. Our work
focuses on the investigation and development of (1) hardware
mechanisms to control inter-task interferences in shared timerandomized
caches and (2) manycore network-on-chip designs
meeting the requirements of Probabilistic Timing Analysis (PTA)
pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems
The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project
(www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles
Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been
partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft
Boosting Guaranteed Performance in Wormhole NoCs with Probabilistic Timing Analysis
Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this paper, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g. wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance. ur results show that WCET estimates of applications running on top of probabilistic wNoCs are reduced by 40% and 75% on average for 4x4 and 6x6 wNoC setups respectively when compared against deterministic wNoCs.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen
Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft
Time-Randomized Wormhole NoCs for Critical Applications
Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet.
In this article, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g., wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance w.r.t. conventional time-deterministic setups. Our results show that performance guarantees of applications running on top of probabilistic wNoC designs improve by 40% and 93% on average for 4 × 4 and 6 × 6 wNoC setups, respectively.The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence.
Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant
Doctorado \la Caixa" - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number
RYC-2013-14717.Peer ReviewedPostprint (author's final draft
Improving Measurement-Based Timing Analysis through Randomisation and Probabilistic Analysis
The use of increasingly complex hardware and software platforms in response to the ever rising performance demands of modern real-time systems complicates the verification and validation of their timing behaviour, which form a time-and-effort-intensive step of system qualification or certification. In this paper we relate the current state of practice in measurement-based timing analysis, the predominant choice for industrial developers, to the proceedings of the PROXIMA project in that very field. We recall the difficulties that the shift towards more complex computing platforms causes in that regard. Then we discuss the probabilistic approach proposed by PROXIMA to overcome some of those limitations. We present the main principles behind the PROXIMA approach as well as the changes it requires at hardware or software level underneath the application. We also present the current status of the project against its overall goals, and highlight some of the principal confidence-building results achieved so far
Design and implementation of a fair credit-based bandwidth sharing scheme for buses
Fair arbitration in the access to hardware shared resources is fundamental to obtain low worst-case execution time (WCET) estimates in the context of critical real-time systems, for which performance guarantees are essential. Several hardware mechanisms exist for managing arbitration in those resources (buses, memory controllers, etc.). They typically attain fairness in terms of the number of slots each contender (e.g., core) gets granted access to the shared resource. However, those policies may lead to unfair bandwidth allocations for workloads with contenders issuing short requests and contenders issuing long requests. We propose a Credit-Based Arbitration (CBA) mechanism that achieves fairness in the cycles each core is granted access to the resource rather than in the number of granted slots. Furthermore, we implement CBA as part of a LEON3 4-core processor for the Space domain in an FPGA proving the feasibility and good performance characteristics of the design by comparing it against other arbitration schemes.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project
(www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundaci´on la Caixa under grant
Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant
TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer Reviewe
Time-Randomized Wormhole NoCs for Critical Applications
Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet.
In this article, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g., wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance w.r.t. conventional time-deterministic setups. Our results show that performance guarantees of applications running on top of probabilistic wNoC designs improve by 40% and 93% on average for 4 × 4 and 6 × 6 wNoC setups, respectively.The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence.
Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant
Doctorado \la Caixa" - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number
RYC-2013-14717.Peer Reviewe
Boosting Guaranteed Performance in Wormhole NoCs with Probabilistic Timing Analysis
Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this paper, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g. wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance. ur results show that WCET estimates of applications running on top of probabilistic wNoCs are reduced by 40% and 75% on average for 4x4 and 6x6 wNoC setups respectively when compared against deterministic wNoCs.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen
Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.Peer Reviewe
Managing a modernised fire service 'Bridging the gap' : a scoping study
Includes bibliographical referencesAvailable from British Library Document Supply Centre- DSC:m03/26235 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo