87 research outputs found

    Clinical predictors of neurocognitive deficits in children with chronic kidney disease

    Get PDF
    The purpose of the study was to explore associations between neurocognitive function and chronic kidney disease (CKD)-related clinical characteristics. Twenty-nine children, ages 7 to 19 years, with an estimated creatinine clearance (eCrCl) of 4–89 ml/min per 1.73 m(2) body surface area were enrolled. Intellectual function (IQ), memory, and attention were measured and expressed as age-based standard scores. Clinical data were obtained by physical examination, laboratory testing, parental questionnaires and medical chart review. Pearson correlations and standard Student’s t-tests were used to identify significant (P < 0.05) relationships between targeted clinical variables and neurocognitive scores. Increased CKD severity correlated with lower IQ (P = 0.001) and memory function (P = 0.02). Memory function was lower in children with longer duration of disease (P = 0.03). Similarly, IQ scores were lowest when kidney disease had started at a younger age (P = 0.03) and with a greater percent of life with CKD (P = 0.04). Our findings provide preliminary evidence that increased disease severity, longer duration of disease, and younger age of onset of kidney disease potentially place children with CKD at increased risk of neurocognitive deficits. Additional investigation is required to better quantify these risk factors, particularly regarding how much variability is accounted for by these specific risk factors

    PVL overexpression due to genomic rearrangements and mutations in the S. aureus reference strain ATCC25923

    Get PDF
    OBJECTIVE: ATCC25923 is a Staphylococcus aureus strain that is positive for the Panton Valentin leukocidin. It has been used for decades as reference strain. We observed that two separately maintained clones of ATCC25923 ("G477 and G478") differed grossly in the expression of this toxin. For that reason, both clones were sequenced using an Illumina MiSeq instrument. After assembling, the final sequences were analyzed and mapped to a previously published ATCC25923 sequence (GenBank CP009361) using bl2seq from the NCBI Blast2 package.RESULTS: The genomes of G477 and G478 size 2778,859 and 2792,213 nucleotides, respectively. Both genomes include a circular plasmid of 27,490 nucleotides. The sequence of the G477 chromosome maps nearly exactly to CP009361. G478 has a slightly larger size because of the presence of an additional transposable element tnp13k. The second copy of that tnp13k element is located in an intergenic region between the genes mazF and rsbU. The sequences of the ATCC25923 clones G477 and G478 differ mainly in the insertion of a second tnp13k element between the genes mazF and rsbU. That insertion may lead to a different transcription of that genome region resulting in upregulation of the expression of the Panton-Valentine leukocidin in the ATCC25923 clone G478.</p

    Intra-Hospital, Inter-Hospital and Intercontinental Spread of ST78 MRSA From Two Neonatal Intensive Care Unit Outbreaks Established Using Whole-Genome Sequencing

    Get PDF
    From 2009 to 2011 [transmission period (TP) 1] and 2014 to 2017 (TP2), two outbreaks involving community-associated clonal complex (CC) 88-MRSA spa types t186 and t786, respectively, occurred in the Neonatal Intensive Care Unit (NICU) of an Irish hospital (H1). This study investigated the relatedness of these isolates, their relationship to other CC88 MRSA from Ireland and their likely geographic origin, using whole-genome sequencing (WGS). All 28 CC88-MRSA isolates identified at the Irish National MRSA Reference Laboratory between 2009 and 2017 were investigated including 20 H1 patient isolates, two H1 isolates recovered from a single healthcare worker (HCW) 2 years apart, three patient isolates from a second hospital (H2) and one patient isolate from each of three different hospitals (H3, H4, and H5). All isolates underwent DNA microarray profiling. Thirteen international isolates with similar microarray profiles to at least one Irish isolate were selected from an extensive global database. All isolates underwent Illumina MiSeq WGS. The majority of Irish isolates (25/28; all H1 isolates, two H2 isolates and the H3 isolate) were identified as ST78-MRSA-IVa and formed a large cluster, exhibiting 1–71 pairwise allelic differences, in a whole-genome MLST-based minimum spanning tree (MST) involving all Irish isolates. A H1/H2, H1/H3, and H1 HCW/patient isolate pair each exhibited one allelic difference. The TP2 isolates were characterised by a different spa type and the loss of hsdS. The three remaining Irish isolates (from H2, H4, and H5) were identified as ST88-MRSA-IVa and dispersed at the opposite end of the MST, exhibiting 81–211 pairwise allelic differences. Core-genome MLST and sequence-based plasmid analysis revealed the recent shared ancestry of Irish and Australian ST78-MRSA-IVa, and of Irish and French/Egyptian ST88-MRSA-IVa. This study revealed the homogeneity of isolates recovered during two NICU outbreaks (despite spa type and hsdS carriage variances), HCW involvement in the outbreak transmission chain and the strain's spread to two other Irish hospitals. The outbreak strain, CC88/ST78-MRSA-IVa, was likely imported from Australia, where it is prevalent. CC88/ST88-MRSA-IVa was also identified in Irish hospitals and was likely imported from Africa, where it is predominant, and/or a country with a large population of African descent

    Molecular typing of ST239-MRSA-III from diverse geographic locations and the evolution of the SCCmec III element during its intercontinental spread

    Get PDF
    ST239-MRSA-III is probably the oldest truly pandemic MRSA strain, circulating in many countries since the 1970s. It is still frequently isolated in some parts of the world although it has been replaced by other MRSA strains in, e.g., most of Europe. Previous genotyping work (Harris et al., 2010; Castillo-Ramírez et al., 2012) suggested a split in geographically defined clades. In the present study, a collection of 184 ST239-MRSA-III isolates, mainly from countries not covered by the previous studies were characterized using two DNA microarrays (i) targeting an extensive range of typing markers, virulence and resistance genes and (ii) a SCCmec subtyping array. Thirty additional isolates underwent whole-genome sequencing (WGS) and, together with published WGS data for 215 ST239-MRSA-III isolates, were analyzed using in-silico analysis for comparison with the microarray data and with special regard to variation within SCCmec elements. This permitted the assignment of isolates and sequences to 39 different SCCmec III subtypes, and to three major and several minor clades. One clade, characterized by the integration of a transposon into nsaB and by the loss of fnbB and splE was detected among isolates from Turkey, Romania and other Eastern European countries, Russia, Pakistan, and (mainly Northern) China. Another clade, harboring sasX/sesI is widespread in South-East Asia including China/Hong Kong, and surprisingly also in Trinidad & Tobago. A third, related, but sasX/sesI-negative clade occurs not only in Latin America but also in Russia and in the Middle East from where it apparently originated and from where it also was transferred to Ireland. Minor clades exist or existed in Western Europe and Greece, in Portugal, in Australia and New Zealand as well as in the Middle East. Isolates from countries where this strain is not epidemic (such as Germany) frequently are associated with foreign travel and/or hospitalization abroad. The wide dissemination of this strain and the fact that it was able to cause a hospital-borne pandemic that lasted nearly 50 years emphasizes the need for stringent infection prevention and control and admission screening

    Genome sequencing and molecular characterisation of Staphylococcus aureus ST772-MRSA-V, “Bengal Bay Clone”

    Get PDF
    Background: The PVL-positive ST772-MRSA-V is an emerging community-associated (CA-) MRSA clone that has been named Bengal Bay Clone since most patients have epidemiological connections to the Indian subcontinent. It is found increasingly common in other areas of the world. Methods: One isolate of ST772-MRSA-V was sequenced using the Illumina Genome Analyzer System. After initial assembling the multiple sequence contigs were analysed using different in-house annotation scripts. Results were compared to microarray hybridisation results of clinical isolates of ST772-MRSA-V, of related strains and to another ST772-MRSA-V genome sequence. Results: According to MLST e-burst analysis, ST772-MRSA-V belongs to Clonal Complex (CC)1, differing from ST1 only in one MLST allele (pta-22). However, there are several additional differences including agr alleles (group II rather than III), capsule type (5 rather than 8), the presence of the egc enterotoxin gene cluster and of the enterotoxin homologue ORF CM14 as well as the absence of the enterotoxin H gene seh. Enterotoxin genes sec and sel are present. ST772-MRSA-V harbours the genes encoding enterotoxin A (sea) and PVL (lukS/F-PV). Both are located on the same prophage. Conclusions: ST772-MRSA-V may have emerged from the same lineage as globally spread CC1 and CC5 strains. It has acquired a variety of virulence factors, and for a CA-MRSA strain it has an unusually high number of genes associated with antibiotic resistance

    Characterisation of Australian MRSA Strains ST75- and ST883-MRSA-IV and Analysis of Their Accessory Gene Regulator Locus

    Get PDF
    Background: Community-acquired methicillin-resistant Staphylococcus aureus have become a major problem in Australia. These strains have now been isolated throughout Australia including remote Indigenous communities that have had minimal exposure to healthcare facilities. Some of these strains, belonging to sequence types ST75 and ST883, have previously been reported to harbour highly divergent alleles of the housekeeping genes used in multilocus sequence typing. Methodology/Principal Findings: ST75-MRSA-IV and ST883-MRSA-IV isolates were characterised in detail. Morphological features as well as 16S sequences were identical to other S. aureus strains. Although a partial rnpB gene sequence was not identical to previously known S. aureus sequences, it was found to be more closely related to S. aureus than to other staphylococci. Isolates also were screened using diagnostic DNA microarrays. These isolates yielded hybridisation results atypical for S. aureus. Primer directed amplification assays failed to detect species markers (femA, katA, sbi, spa). However, arbitrarily primed amplification indicated the presence of unknown alleles of these genes. Isolates could not be assigned to capsule types 1, 5 or 8. The allelic group of the accessory gene regulator (agr) locus was not determinable. Sequencing of a region of agrB, agrC and agrD (approximately 2,100 bp) revealed a divergent sequence. However, this sequence is more related to S. aureus agr alleles I and IV than to agr sequences from other Staphylococcus species. The predicted autoinducing peptide (AIP) sequence of ST75 was identical to that of agr group I, while the predicted AIP sequence of ST883 was identical to agr group IV. Conclusions/Significance: The genetic properties of ST75/ST883-MRSA may be due to a series of evolutionary events in ancient insulated S. aureus strains including a convergent evolution leading to agr group I- or IV-like AIP sequences and a recent acquisition of SCCmec IV elements

    Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent.

    Get PDF
    The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements
    corecore