41 research outputs found

    Toward the detection of permafrost using land-surface temperature mapping

    Get PDF
    Permafrost is degrading under current warming conditions, disrupting infrastructure, releasing carbon from soils, and altering seasonal water availability. Therefore, it is important to quantitatively map the change in the extent and depth of permafrost. We used satellite images of land-surface temperature to recognize and map the zero curtain, i.e., the isothermal period of ground temperature during seasonal freeze and thaw, as a precursor for delineating permafrost boundaries from remotely sensed thermal-infrared data. The phase transition of moisture in the ground allows the zero curtain to occur when near-surface soil moisture thaws or freezes, and also when ice-rich permafrost thaws or freezes. We propose that mapping the zero curtain is a precursor to mapping permafrost at shallow depths. We used ASTER and a MODIS-Aqua daily afternoon land-surface temperature (LST) timeseries to recognize the zero curtain at the 1-km scale as a "proof of concept. " Our regional mapping of the zero curtain over an area around the 7000 m high volcano Ojos del Salado in Chile suggests that the zero curtain can be mapped over arid regions of the world. It also indicates that surface heterogeneity, snow cover, and cloud cover can hinder the effectiveness of our approach. To be of practical use in many areas, it may be helpful to reduce the topographic and compositional heterogeneity in order to increase the LST accuracy. The necessary finer spatial resolution to reduce these problems is provided by ASTER (90 m).Fil: Batbaatar, Jigjidsurengiin. University of Washington; Estados UnidosFil: Gillespie , Alan R.. University of Washington; Estados UnidosFil: Sletten, Ronald S.. University of Washington; Estados UnidosFil: Mushkin , Amit. University of Washington; Estados UnidosFil: Amit, Rivka. Geological Survey Of Israel; IsraelFil: Trombotto, Dario Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Liu , Lu. University of Washington; Estados UnidosFil: Petrie, Gregg. University of Washington; Estados Unido

    Active Ground Patterns Near Mars' Equator in the Glen Torridon Region of Gale Crater

    Get PDF
    On Mars, near the equator, much of the terrain in Gale Crater consists of bedrock outcrops separated by relatively smooth, uniform regolith surfaces. In scattered sites, however, distinct patterns—in the form and texture of the ground surface—contrast sharply with the typical terrain and with eolian bedforms. This paper focuses on these diverse, intriguing ground patterns. They include ∼1 to >10 m-long linear disruptions of uniform regolith surfaces, alignments, and other arrangements of similar-sized rock fragments and shallow, ∼0.1 m-wide sandy troughs 1–10 m in length. Similar features were recognized early in the Mars Science Laboratory (MSL) mission, but they received only limited attention until Curiosity, the MSL rover, encountered striking examples in the Glen Torridon region. Herein, the ground patterns are illustrated with rover images. Potential mechanisms are briefly discussed in the context of the bedrock composition and atmospheric conditions documented by Curiosity. The evidence suggests that the patterns are active forms of spontaneous granular organization. It leads to the hypothesis that the patterns arise and develop from miniscule, inferred cyclic expansion and contraction of the bedrock and regolith, likely driven by oscillating transfers of energy and moisture between the atmosphere and the terrain. The hypothesis has significant implications for studies of contemporary processes on Mars on both sides of the atmosphere-lithosphere interface. The ground patterns, as well as ripples and dunes formed by the wind, constitute remarkable extra-terrestrial examples of granular self-organization, complex phenomena well known in diverse systems on Earth.A. G. Fairén was supported by the ERC-CoG #818602. M.-P. Zorzano has been partially funded by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (INTA-CSIC) and by the Spanish Ministry of Science and Innovation (PID2019-104205GB-C21). Last but not least, B. Hallet and R. S. Sletten gratefully acknowledge sustained funding for their work through the MSL mission in a NASA grant awarded to MSSS

    Fast-growing till over ancient ice in Beacon Valley, Antarctica

    Get PDF
    We analyze published cosmogenic 3He depth profiles through the till that covers relict glacier ice in Beacon Valley, Antarctica, in order to derive rigorous constraints on the till thickness history, and on the amount and rate of ice loss by sublimation. The till is a residue of debris-laden ice that sublimed. The 3He profiles show that the lower 80% of the till formed in the past 310–43 k.y. under sublimation rates averaging >7 m·m.y.−1 (meters per million years). Such rapid recent growth of the till contradicts previous interpretations that it is older than 8.1 Ma at an adjacent site, where it encloses volcanic ash of this age. We question whether the ash provides a valid age constraint for the ice. Cosmogenic nuclide analysis of the till where the ash was collected for dating should resolve this question
    corecore