180 research outputs found

    Enzyme-mediated labeling of proteins and protein-protein interactions in vitro and in living cells

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2010.Vita. Cataloged from PDF version of thesis.Includes bibliographical references.The E. coli biotin ligase enzyme, BirA, has been previously used by the Ting research group for site-specific labeling of peptide-tagged cell surface proteins. We sought to expand the utility of biotin ligase-mediated labeling to functional group handles, including azides and alkynes, for bio-orthogonal chemistry. Since the BirA and its point mutants were unable to ligate these probes to an acceptor peptide, we screened biotin ligases from multiple species to identify more permissive enzymes. We determined that the Pyrococcus horikoshii biotin ligase utilizes an azide-bearing biotin analog and that the Saccharomyces cerevisiae biotin ligase can utilize an alkyne-functionalized biotin analog. We subsequently demonstrated that the azidefunctionalized biotin analog can be derivatized with a phosphine probe via the Staudinger ligation. We next turned to the goal of delivering quantum dots to the cytosol of living cells, which in the future may permit intracellular single-molecule imaging. We investigated viral methods of delivery, but found that our protocol caused quantum dots to be trapped in endocytic vesicles. We then validated previous reports that the pore-forming toxin streptolysin 0 be used to deliver quantum dots to the cytosol of living cells. Lipoic acid ligase, or LpIA, has been previously applied to site-specific protein labeling of peptide-tagged proteins using small molecule probes including lipoic acid and coumarin fluorophores. We utilized LpIA and its substrate, the LAP peptide, to create sensors for proteinprotein interactions. If LpIA is fused to one protein and LAP is fused to another, only when the two proteins interact do LpIA and LAP come into proximity, allowing probe ligation onto the peptide to occur as a readout of the interaction. We demonstrate that proximity-dependent coumarin ligation detects protein-protein interactions in living mammalian cells with extremely low background, a signal-to-background ratio of at least 5:1, and sufficiently fast kinetics to label interactions with a half-life of at least 1 minute. The reporter quantitatively responds to subpopulations of interacting proteins, allowing dissociation constants to be measured. Coumarin fluorescence accurately reports the subcellular localization of the interaction under study. Finally, we applied proximity-dependent coumarin ligation to imaging of the interaction of PSD-95 and neuroligin-1, two proteins involved in synaptic maturation, in neurons.by Sarah Ann Slavoff.Ph.D

    Non-coding RNAs in muscle differentiation and musculoskeletal disease

    Get PDF
    RNA is likely to be the most rediscovered macromolecule in biology. Periodically, new non-canonical functions have been ascribed to RNA, such as the ability to act as a catalytic molecule or to work independently from its coding capacity. Recent annotations show that more than half of the transcriptome encodes for RNA molecules lacking coding activity. Here we illustrate how these transcripts affect skeletal muscle differentiation and related disorders. We discuss the most recent scientific discoveries that have led to the identification of the molecular circuitries that are controlled by RNA during the differentiation process and that, when deregulated, lead to pathogenic events. These findings will provide insights that can aid in the development of new therapeutic interventions for muscle disease

    Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq

    Get PDF
    Thousands of small Open Reading Frames (smORFs) with the potential to encode small peptides of fewer than 100 amino acids exist in our genomes. However, the number of smORFs actually translated, and their molecular and functional roles are still unclear. In this study, we present a genome-wide assessment of smORF translation by ribosomal profiling of polysomal fractions in Drosophila. We detect two types of smORFs bound by multiple ribosomes and thus undergoing productive translation. The 'longer' smORFs of around 80 amino acids resemble canonical proteins in translational metrics and conservation, and display a propensity to contain transmembrane motifs. The 'dwarf' smORFs are in general shorter (around 20 amino-acid long), are mostly found in 5'-UTRs and non-coding RNAs, are less well conserved, and have no bioinformatic indicators of peptide function. Our findings indicate that thousands of smORFs are translated in metazoan genomes, reinforcing the idea that smORFs are an abundant and fundamental genome component

    Discovery of Human sORF-Encoded Polypeptides (SEPs) in Cell Lines and Tissue

    Get PDF
    The existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs. These results continue to expand the human genome and proteome and demonstrate that SEPs are a ubiquitous class of nonannotated polypeptides that require further investigation

    The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins

    Get PDF
    The Ku-binding motif (KBM) is a short peptide module first identified in APLF that we now show is also present in Werner syndrome protein (WRN) and in Modulator of retrovirus infection homologue (MRI). We also identify a related but functionally distinct motif in XLF, WRN, MRI and PAXX, which we denote the XLF-like motif. We show that WRN possesses two KBMs; one at the N terminus next to the exonuclease domain and one at the C terminus next to an XLF-like motif. We reveal that the WRN C-terminal KBM and XLF-like motif function cooperatively to bind Ku complexes and that the N-terminal KBM mediates Ku-dependent stimulation of WRN exonuclease activity. We also show that WRN accelerates DSB repair by a mechanism requiring both KBMs, demonstrating the importance of WRN interaction with Ku. These data define a conserved family of KBMs that function as molecular tethers to recruit and/or stimulate enzymes during NHEJ

    Imaging Trans-Cellular Neurexin-Neuroligin Interactions by Enzymatic Probe Ligation

    Get PDF
    Neurexin and neuroligin are transmembrane adhesion proteins that play an important role in organizing the neuronal synaptic cleft. Our lab previously reported a method for imaging the trans-synaptic binding of neurexin and neuroligin called BLINC (Biotin Labeling of INtercellular Contacts). In BLINC, biotin ligase (BirA) is fused to one protein while its 15-amino acid acceptor peptide substrate (AP) is fused to the binding partner. When the two fusion proteins interact across cellular junctions, BirA catalyzes the site-specific biotinylation of AP, which can be read out by staining with streptavidin-fluorophore conjugates. Here, we report that BLINC in neurons cannot be reproduced using the reporter constructs and labeling protocol previously described. We uncover the technical reasons for the lack of reproducibilty and then re-design the BLINC reporters and labeling protocol to achieve neurexin-neuroligin BLINC imaging in neuron cultures. In addition, we introduce a new method, based on lipoic acid ligase instead of biotin ligase, to image trans-cellular neurexin-neuroligin interactions in human embryonic kidney cells and in neuron cultures. This method, called ID-PRIME for Interaction-Dependent PRobe Incorporation Mediated by Enzymes, is more robust than BLINC due to higher surface expression of lipoic acid ligase fusion constructs, gives stronger and more localized labeling, and is more versatile than BLINC in terms of signal readout. ID-PRIME expands the toolkit of methods available to study trans-cellular protein-protein interactions in living systems.National Institutes of Health (U.S.) (DP1 OD003961

    Classification and function of small open reading frames

    Get PDF
    Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease

    How many human proteoforms are there?

    Get PDF
    Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype
    • …
    corecore