4,455 research outputs found

    Q**2-dependence of semi-inclusive electron-nucleus scattering and nucleon-nucleon correlations

    Get PDF
    We analize semi-inclusive electron-nucleus processes e+A->e'+h+X at moderate Q**2 and energy transfer nu. Our results show that nucleons bound in the nuclear medium are distributed according to a function f_A that reduces to the standard light-cone distribution in the Bjorken limit and exhibits a sizeable Q**2-dependence at lower Q**2, particular Q**2 is order of nu**2.Comment: 8 pages of LaTeX-text and 2 figure ps-file

    Temperature dependence of nonlinear auto-oscillator linewidths: Application to spin-torque nano-oscillators

    Full text link
    The temperature dependence of the generation linewidth for an auto-oscillator with a nonlinear frequency shift is calculated. It is shown that the frequency nonlinearity creates a finite correlation time, tau, for the phase fluctuations. In the low-temperature limit in which the spectral linewidth is smaller than 1/tau, the line shape is approximately Lorentzian and the linewidth is linear in temperature. In the opposite high-temperature limit in which the linewidth is larger than 1/tau, the nonlinearity leads to an apparent "inhomogeneous broadening" of the line, which becomes Gaussian in shape and has a square-root dependence on temperature. The results are illustrated for the spin-torque nano-oscillator.Comment: 4 pages, 1 figur

    Generation of spin-wave dark solitons with phase engineering

    Full text link
    We generate experimentally spin-wave envelope dark solitons from rectangular high-frequency dark input pulses with externally introduced phase shifts in yttrium-iron garnet magnetic fims. We observe the generation of both odd and even numbers of magnetic dark solitons when the external phase shift varies. The experimental results are in a good qualitative agreement with the theory of the dark-soliton generation in magnetic films developed earlier [Phys. Rev. Lett. 82, 2583 (1999)].Comment: 6 pages, including 7 figures, submitted to Phys. Rev.

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table

    Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators

    Full text link
    Integrated power and linewidth of a propagating and a self-localized spin wave modes excited by spin-polarized current in an obliquely magnetized magnetic nanocontact are studied experimentally as functions of the angle θe\theta_e between the external bias magnetic field and the nanocontact plane. It is found that the power of the propagating mode monotonically increases with θe\theta_e, while the power of the self-localized mode has a broad maximum near θe=40\theta_e = 40 deg, and exponentially vanishes near the critical angle θe=58\theta_e = 58 deg, at which the localized mode disappears. The linewidth of the propagating mode in the interval of angles 58<θe<9058<\theta_e<90 deg, where only this mode is excited, is adequtely described by the existing theory, while in the angular interval where both modes can exist the observed linewidth of both modes is substantially broadened due to the telegraph switching between the modes. Numetical simulations and an approximate analytical model give good semi-quantitative description of the observed results.Comment: 8 pages, 6 figure

    Cash is King: An Easy Way to Understand Debits and Credits

    Get PDF
    In Accounting, it is a well-known problem that many students often have difficulty in deciding whether to debit or credit an account to increase its balance. After practicing and teaching Accounting for more than forty years, the authors have developed a simple, practical and fault-proof method of handling debits and credits--the Cash is King method. Ten representative examples are provided to demonstrate how to use the Cash is King Method to assist the students handle debits and credits and guide them in recording all accounting transactions correctly
    corecore