72 research outputs found
Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1–120) Human Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice
Background: Recent clinical studies have demonstrated that dimebon, a drug originally designed and used as a non-selective antihistamine, ameliorates symptoms and delays progress of mild to moderate forms of Alzheimer’s and Huntington’s diseases. Although the mechanism of dimebon action on pathological processes in degenerating brain is elusive, results of studies carried out in cell cultures and animal models suggested that this drug might affect the process of pathological accumulation and aggregation of various proteins involved in the pathogenesis of proteinopathies. However, the effect of this drug on the pathology caused by overexpression and aggregation of alpha-synuclein, including Parkinson’s disease (PD), has not been assessed. Objective: To test if dimebon affected alpha-synuclein-induced pathology using a transgenic animal model. Methods: We studied the effects of chronic dimebon treatment on transgenic mice expressing the C-terminally truncated (1–120) form of human alpha-synuclein in dopaminergic neurons, a mouse model that recapitulates several biochemical, histopathological and behavioral characteristics of the early stage of PD. Results: Dimebon did not improve balance and coordination of aging transgenic animals or increase the level of striatal dopamine, nor did it prevent accumulation of alpha-synuclein in cell bodies of dopaminergic neurons. Conclusion: Our observations suggest that in the studied model of alpha-synucleinopathy dimebon has very limited effect on certain pathological alterations typical of PD and related diseases
Aβ42 Mutants with Different Aggregation Profiles Induce Distinct Pathologies in Drosophila
Aggregation of the amyloid-β-42 (Aβ42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Aβ aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Aβ can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Aβ42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Aβ42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Aβ42Arc) and an artificial mutation (Aβ42art) that is known to suppress aggregation and toxicity of Aβ42 in vitro. In the Drosophila brain, Aβ42Arc formed more oligomers and deposits than did wild type Aβ42, while Aβ42art formed fewer oligomers and deposits. The severity of locomotor dysfunction and premature death positively correlated with the aggregation tendencies of Aβ peptides. Surprisingly, however, Aβ42art caused earlier onset of memory defects than Aβ42. More remarkably, each Aβ induced qualitatively different pathologies. Aβ42Arc caused greater neuron loss than did Aβ42, while Aβ42art flies showed the strongest neurite degeneration. This pattern of degeneration coincides with the distribution of Thioflavin S-stained Aβ aggregates: Aβ42Arc formed large deposits in the cell body, Aβ42art accumulated preferentially in the neurites, while Aβ42 accumulated in both locations. Our results demonstrate that manipulation of the aggregation propensity of Aβ42 does not simply change the level of toxicity, but can also result in qualitative shifts in the pathology induced in vivo
Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: conformational analysis and binding mode of multisite inhibitors
The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer’s disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challeng- ing. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments—huprine and rhein— that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8–14, 154–169 and 307–318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable “floppy” pocket would enable the bind- ing of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligo- methylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications intro- duced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors
APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells
Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ1-40 and Aβ1-42. Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD
Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases
Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th
Mitophagy plays a central role in mitochondrial ageing
The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing
Recommended from our members
The Centiloid project: Standardizing quantitative amyloid plaque estimation by PET
Although amyloid imaging with PiB-PET ([C-11]Pittsburgh Compound-B positron emission tomography), and now with F-18-labeled tracers, has produced remarkably consistent qualitative findings across a large number of centers, there has been considerable variability in the exact numbers reported as quantitative outcome measures of tracer retention. In some cases this is as trivial as the choice of units, in some cases it is scanner dependent, and of course, different tracers yield different numbers. Our working group was formed to standardize quantitative amyloid imaging measures by scaling the outcome of each particular analysis method or tracer to a 0 to 100 scale, anchored by young controls (≤45 years) and typical Alzheimer's disease patients. The units of this scale have been named "Centiloids." Basically, we describe a "standard" method of analyzing PiB PET data and then a method for scaling any "nonstandard" method of PiB PET analysis (or any other tracer) to the Centiloid scale
- …