16 research outputs found

    Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective

    Get PDF
    The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a "PEEX region". It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land-atmosphere-ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially "the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change" and the "socio-economic development to tackle air quality issues".Peer reviewe

    Ship-Borne Observations of Atmospheric CH4 and δ13C Isotope Signature in Methane over Arctic Seas in Summer and Autumn 2021

    No full text
    Determining the sources of methane emissions in the Arctic remains a complex problem, due to their heterogeneity and diversity. Information on the amount of emissions has significant uncertainties and may differ by an order of magnitude in various literature sources. Measurements made in the immediate vicinity of emission sources help to clarify emissions and reduce these uncertainties. This paper analyzes the data of three expeditions, carried out in the western Arctic seas during Arctic spring, summer, and early autumn in 2021, which obtained continuous data on the concentration of methane and its isotope signature δ13C. CH4 concentrations and δ13C displayed temporal and spatial variations ranging from 1.952 to 2.694 ppm and from −54.7‰ to −40.9‰, respectively. A clear correlation was revealed between the surface methane concentration and the direction of air flow during the measurement period. At the same time, even with advection from areas with a significant anthropogenic burden or from locations of natural gas mining and transportation, we cannot identify particular source of emissions; there is a dilution or mixing of gas from different sources. Our results indicate footprints of methane sources from wetlands, freshwater sources, shelf sediments, and even hydrates

    Emission Ratios and Source Identification of VOCs in Moscow in 2019–2020

    No full text
    Measurements of CO and 15 volatile organic compounds (VOCs) at the IAP-RAS (A.M. Obukhov Institute of Atmospheric Physics) site located in the center of Moscow were analyzed. Acetaldehyde, ethanol, 1.3-butadiene, isoprene, toluene and C-8 aromatics were established to be the main ozone precursors in the observed area, providing up to 82% of the total ozone formation potential of the VOCs measured. Diurnal and seasonal variations of the compounds are discussed. The concentrations of anthropogenic VOCs (acetaldehyde, benzene, 1.3-butadiene, toluene, and C-8 aromatics) did not exceed their maximum permissible levels, reaching their maxima in summer and autumn in the morning and evening hours. Biogenic ethanol and isoprene were the highest in summer midday but their concentrations were low enough (up to 4 and 0.4 ppbv, respectively) due to small vegetation area around the site. Emission ratios (ERs) for the main ozone precursors—acetaldehyde, ethanol, 1.3-butadiene, isoprene, toluene, and C-8 aromatics—were estimated from two-sided linear regression fits using benzene and CO as tracers for anthropogenic emissions, with spatial and temporal filters being applied to account for the influence of chemistry and local emission sources. The best estimates of ERs were obtained using benzene as a reference species. Anthropogenic fractions of VOCs (AFs) were then estimated. As expected, acetaldehyde, toluene, 1.3-butadiene, and C8aromatics were entirely anthropogenic and emitted mainly from urban vehicle exhausts throughout the day, both in summer and in winter. AFs of isoprene and ethanol did not exceed 30% and 50% in summer, respectively, during both daytime and nighttime hours. In winter, the anthropogenic fractions of isoprene and ethanol were slightly higher (up to 35% and 60%, respectively)

    Emission Ratios and Source Identification of VOCs in Moscow in 2019–2020

    No full text
    Measurements of CO and 15 volatile organic compounds (VOCs) at the IAP-RAS (A.M. Obukhov Institute of Atmospheric Physics) site located in the center of Moscow were analyzed. Acetaldehyde, ethanol, 1.3-butadiene, isoprene, toluene and C-8 aromatics were established to be the main ozone precursors in the observed area, providing up to 82% of the total ozone formation potential of the VOCs measured. Diurnal and seasonal variations of the compounds are discussed. The concentrations of anthropogenic VOCs (acetaldehyde, benzene, 1.3-butadiene, toluene, and C-8 aromatics) did not exceed their maximum permissible levels, reaching their maxima in summer and autumn in the morning and evening hours. Biogenic ethanol and isoprene were the highest in summer midday but their concentrations were low enough (up to 4 and 0.4 ppbv, respectively) due to small vegetation area around the site. Emission ratios (ERs) for the main ozone precursors—acetaldehyde, ethanol, 1.3-butadiene, isoprene, toluene, and C-8 aromatics—were estimated from two-sided linear regression fits using benzene and CO as tracers for anthropogenic emissions, with spatial and temporal filters being applied to account for the influence of chemistry and local emission sources. The best estimates of ERs were obtained using benzene as a reference species. Anthropogenic fractions of VOCs (AFs) were then estimated. As expected, acetaldehyde, toluene, 1.3-butadiene, and C8aromatics were entirely anthropogenic and emitted mainly from urban vehicle exhausts throughout the day, both in summer and in winter. AFs of isoprene and ethanol did not exceed 30% and 50% in summer, respectively, during both daytime and nighttime hours. In winter, the anthropogenic fractions of isoprene and ethanol were slightly higher (up to 35% and 60%, respectively)

    EVIDENCE OF ATMOSPHERIC RESPONSE TO METHANE EMISSIONS FROM THE EAST SIBERIAN ARCTIC SHELF

    No full text
    Average atmospheric methane concentration (CH4) in the Arctic is generally higher than in other regions of the globe. Due to the lack of observations in the Arctic there is a deficiency of robust information about sources of the methane emissions. Measured concentrations of methane and its isotopic composition in ambient air can be used to discriminate sources of CH4. Here we present the results of measurements of the atmospheric methane concentration and its isotope composition (δ13CCH4) in the East Siberian Arctic Seas during the cruise in the autumn 2016. Local sections where the concentration of methane in the near-water layer of the atmosphere reaches 3.6 ppm are identified. The measurements indicated possibility of formation of high methane peaks in atmospheric surface air above the East Siberian Arctic Shelf (ESAS) where methane release from the bottom sediments has been assumed

    Isoprene, Methyl Vinyl Ketone and Methacrolein from TROICA-12 Measurements and WRF-CHEM and GEOS-CHEM Simulations in the Far East Region

    No full text
    Spatial and temporal distributions of isoprene and its oxidation products, methyl vinyl ketone and methacrolein in the Far East region of Russia were investigated. The measurement data were obtained from a mobile laboratory, which moved along the Trans-Siberian railway and from WRF-CHEM (Weather Research and Forecasting Chemical Model) and GEOS-CHEM (Goddard Earth Observing System Chemical Model) simulations. During the simulations, the RACM-MIM and MOZART mechanisms, included in the mesoscale WRF-CHEM model, as well as the Caltech Isoprene Scheme (CIS), built in the global GEOS-CHEM model, have been used. We found that the temporal distribution of the measured isoprene is in good agreement with the simulations. The measured isoprene, methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations demonstrate pronounced diurnal variations. The correlation between the measured isoprene and MVK + MACR was good (R ~ 0.60–0.86). However, the simulated correlation between MVK + MACR and isoprene is very low, with the data for the night-time and daytime values varying. The simulated MVK + MACR to isoprene ratio, in comparison with the experimental result, has pronounced diurnal variations. During twilight and the night-time, the simulated MVK + MACR to isoprene ratio is more than 10. We propose that, due to the validity of the kinetic equations only in the homogeneous system, all chemical and transport (CTM) models, based on these kinetic equations, are not able to show an adequate simulation at night in the weak mixing atmosphere, when the atmospheric structure becomes heterogeneous. At moderate latitudes, we recommend the use of the turbulent Damköhler number and the Kolmogorov Damköhler numbers, which characterize the limits of CTM applicability, as the quality flags at the air quality forecast simulations

    CHANGES IN TRENDS OF ATMOSPHERIC COMPOSITION OVER URBAN AND BACKGROUND REGIONS OF EURASIA: ESTIMATES BASED ON SPECTROSCOPIC OBSERVATIONS

    Get PDF
    The analysis of the CO and CH4 total column (TC) as well as aerosol optical depth (AOD) data in urban and background regions of Eurasia for different seasons and periods from 1998 to 2016 years is presented. Trends estimates based on longterm spectroscopic datasets of OIAP RAS (Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences) for stations Moscow, Zvenigorod (ZSS, Moscow province), Zotino (ZOTTO, Central Siberia), Beijing (joint site of OIAP RAS and IAP CAS (Institute of Atmospheric Physics, Chinese Academy of Sciences)), SPbSU stations Peterhof and NDACC stations located in Eurasia were compared between themselves and with similar assessments obtained from satellite data. Significant decrease of anthropogenic CO in megacities Moscow (3.5±2.2%/yr) and Beijing (1.4±1.4%/yr) in autumn months of 1998−2016 were found according ground-based spectroscopic observations. In spite of total anthropogenic CO emissions decrease (for Europe and China) and absence of growth of wild-fires emissions in 2007−2016 we found that CO TC in background regions of Northern Eurasia has stabilized or increased in summer and autumn months of 2007−2016. Decrease of AOD over Central and Southern Europe and over China (1−5%/ yr) was observed after 2007. Since 2007 an increase in CH4 TC trends over Northern Europe as well as for tropical belt of Eurasia has been obtained. Analysis of satellite observations AIRS v6 of CO and CH4 TC and MODIS AOD data confirmed the ground-based estimates of trends

    Ionosphere Waves Service (IWS) – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    No full text
    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations
    corecore