751 research outputs found

    Joint Source-Channel Decoding Over MIMO Channels Based on Partial Marginalization

    Full text link

    Circulating Brain-Injury Markers After Surgery for Craniosynostosis

    Get PDF
    Objective: Historically, there have been few quantitative methods for effectively evaluating outcomes after surgery for craniosynostosis. In this prospective study, we assessed a novel approach for detecting possible postsurgery brain injury in patients with craniosynostosis. Methods: We included consecutive patients operated on for sagittal (pi-plasty or craniotomy combined with springs) or metopic (frontal remodeling) synostosis at the Craniofacial Unit at Sahlgrenska University Hospital, Gothenburg, Sweden, from January 2019 to September 2020. Plasma concentrations of the brain-injury biomarkers neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau were measured immediately before induction of anesthesia, immediately before and after surgery, and on the first and the third postoperative days using single-molecule array assays. Results: Of the 74 patients included, 44 underwent craniotomy combined with springs for sagittal synostosis, 10 underwent pi-plasty for sagittal synostosis, and 20 underwent frontal remodeling for metopic synostosis. Compared with baseline, GFAP level showed a maximal significant increase at day 1 after frontal remodeling for metopic synostosis and pi-plasty (P = 0.0004 and P = 0.003, respectively). By contrast, craniotomy combined with springs for sagittal synostosis showed no increase in GFAP. For neurofilament light, we found a maximal significant increase at day 3 after surgery for all procedures, with significantly higher levels observed after frontal remodeling and pi-plasty compared with craniotomy combined with springs (P < 0.001). Conclusions: These represent the first results showing significantly increased plasma levels of brain-injury biomarkers after surgery for craniosynostosis. Furthermore, we found that more extensive cranial vault procedures resulted in higher levels of these biomarkers relative to less extensive procedures

    Massive migration from the steppe is a source for Indo-European languages in Europe

    Full text link
    We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost four hundred thousand polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of western and far eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ~8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary, and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ~24,000 year old Siberian6 . By ~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred throughout much of Europe, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ~3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for the theory of a steppe origin of at least some of the Indo-European languages of Europe

    Closed-Form Sum-MSE Minimization for the Two-User Gaussian MIMO Broadcast Channel

    Full text link

    Circulating brain injury biomarkers increase after endoscopic surgery for pituitary tumors

    Get PDF
    Pituitary tumors and subsequent treatment with endoscopic transsphenoidal surgery (ETSS) may cause injury to suprasellar structures, causing long-term fatigue and neurocognitive impairment. A method to quantify brain injury after ETSS is not available. In this prospective, exploratory study of patients undergoing ETSS for pituitary tumors, a novel approach to detect possible neuronal damage is presented. Plasma concentrations of brain injury biomarkers (glial fibrillary acidic protein [GFAP], tau, and neurofilament light [NFL]) were measured the day before surgery, immediately after surgery, at day 1 and 5, and at 6 and 12 months after surgery, using enzyme-linked immunosorbent assays. The association between the increase of biomarkers with preoperative tumor extension and postoperative patient-perceived fatigue was evaluated. Suprasellar tumor extension was assessed from MRI scans, and self-perceived fatigue was assessed using the Multidimensional Fatigue Inventory before and 6 months after surgery. Thirty-five patients were included in the analysis. Compared to baseline, GFAP showed a maximal increase at day 1 after surgery (p = 0.0005), tau peaked postoperatively on the day of surgery (p = 0.019), and NFL reached its maximum at day 5 after surgery (p < 0.0001). The increase in GFAP correlated with preoperative chiasmal compression (p = 0.020). The increase in tau was correlated with preoperative chiasmal (p = 0.011) and hypothalamus compression (p = 0.016), and fatigue score 6 months after surgery (p = 0.016). In conclusion, the concentrations of brain injury biomarkers in blood increased after ETSS for pituitary tumors. The results indicate that postoperative plasma GFAP and tau might reflect astroglial and neuronal damage after ETSS

    Iron Age and Anglo-Saxon genomes from East England reveal British migration history

    Get PDF
    British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain

    Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Get PDF
    Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis

    Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Get PDF
    Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis

    No association between germline allele-specific expression of TGFBR1 and colorectal cancer risk in Caucasian and Ashkenazi populations

    Get PDF
    Background: germline allele-specific expression (ASE) of the TGFBR1 gene has been reported as a strong risk factor for colorectal cancer (CRC) with an odds ratio close to 9. Considering the potential implications of the finding, we undertook the task of validating the initial results in this study. Methods: allele-specific expression was measured using the highly quantitative and robust technique of pyrosequencing. Individuals from two different populations were studied, one Caucasian-dominated and the other of Ashkenazi Jewish descent, with different sources of non-tumoral genetic material in each. Results: our results showed no statistically significant differences in the degree of ASE between CRC patients and controls, considering ASE as either a quantitative or a binary trait. Using defined cutoff values to categorise ASE, 1.0% of blood lymphocytes from informative Israeli cases (total n=96) were ASE positive (median 1.00; range 0.76-1.31) and 2.2% of informative matched controls (total n=90) were ASE positive (median 1.00; range 0.76-1.87). Likewise, normal mucosae from Spanish patients (median 1.03; range: 0.68-1.43; n=75) did not show significant differences in the degree of ASE when compared with the Israeli patients or controls. Conclusions: taken together, these results suggest that ASE of TGFBR1 does not confer an increased risk of CRC
    corecore