45 research outputs found
Dietary b-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota
Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, β-glucan (MacroGard®) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast β-1,3/1,6-glucan in form of MacroGard® at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, microbiota analysis, trypsin activity and size measurements. Along with the feeding of β-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard® fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by β-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-α and il-1β was observed. We conclude that the administration of MacroGard® induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot
Managing the microbial community of marine fish larvae: a holistic perspective for larviculture
The availability of high-quality juveniles is a bottleneck in the farming of many marine fish species. Detrimental larvae-microbe interactions are a main reason for poor viability and quality in larval rearing. In this review, we explore the microbial community of fish larvae from an ecological and eco-physiological perspective, with the aim to develop the knowledge basis for microbial management. The larvae are exposed to a huge number of microbes from external and internal sources in intensive aquaculture, but their relative importance depend on the rearing technology used (especially flow-through vs. recirculating systems) and the retention time of the water in the fish tanks. Generally, focus has been on microbes entering the system, but microbes from growth within the system is normally a substantial part of the microbes encountered by larvae. Culture independent methods have revealed an unexpected high richness of bacterial species associated with larvae, with 100–250 operational taxonomic units associated with one individual. The microbiota of larvae changes rapidly until metamorphosis, most likely due to changes in the selection pressure in the digestive tract caused by changes in host-microbe and microbe-microbe interactions. Even though the microbiota of larvae is distinctly different from the microbiota of the water and the live food, the microbiota of the water strongly affects the microbiota of the larvae. We are in the early phase of understanding larvae-microbe interactions in vivo, but some studies with other animals than fish emphasize that we so far have underestimated the complexity of these interactions. We present examples demonstrating the diversity of these interactions. A large variety of microbial management methods exist, focusing on non-selective reduction of microbes, selective enhancement of microbes, and on improvement of the resistance of larvae against microbes. However, relatively few methods have been studied extensively. We believe that there is a lot to gain by increasing the diversity of approaches for microbial management. As many microbial management methods are perturbations of the microbial community, we argue that ecological theory is needed to foresee and test for longer term consequences in microbe-microbe and microbe-larvae interactions. We finally make some recommendations for future research and development
Evaluation of beta-(1 -> 3, 1 -> 6)-glucans and high-M alginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhua L.)
Stimulation of the non-specific defence enhances the disease resistance and growth, and has good potentials as a measure for increased microbial control in juvenile production of marine fish and shellfish. So far, the most commonly used immunostimulants are β-(1 → 3, 1 → 6)-glucans, and in this study the stimulatory potential of a β-(1 → 3, 1 → 6)-glucan of marine origin, the storage polysaccharide from the marine diatom Chaetoceros mülleri, was examined. The glucan (chrysolaminaran) was extracted from cultures of C. mülleri, and used as a dietary supplement in two first feeding experiments with larvae of Atlantic cod Gadus morhua L. In one experiment the microalgal glucan was compared to the commercial yeast-glucan product MacroGard®, and in the other to an alginate with a high content of mannuronic acid (High-M alginate) isolated from Durvillaea antarctica. The stimulants were given via rotifers, and weaning to formulated feed was initiated at day 17 or 18 after hatching. The survival ± SEM at day 27 after hatching was 24.5 ± 2.0%, 14.8 ± 4.5% and 13.1 ± 1.4% for the groups fed C. mülleri-glucan, yeast glucan and for the control, respectively, in the first experiment. The group fed C. mülleri-glucan group had higher survival compared to the control (P < 0.05) group, whereas the yeast glucan had no positive effect on the survival (p > 0.05). The dry weights of the groups at day 27 were low, with 203.2 ± 52.2, 165.2 ± 43.4 and 198.5 ± 58.1 μg per larva for the C. mülleri-glucan, yeast glucan and control groups, respectively. In the second experiment the survival in the period of feeding formulated feed (days 18-30) were 44.6 ± 4.3%, 44.7 ± 1.3%, and 33.8 ± 4.1% survival for the C. mülleri-glucan, High-M alginate and control group, respectively. The cod larvae fed C. mülleri-glucan reached an average weight of 531.6 ± 17.2 μg at day 30, which was significantly higher (p < 0.05) than the control group that had an average of 473.6 ± 3.5 μg. The larvae fed High-M alginate had an average weight of 470.3 ± 31.6 μg per larva at day 30, and not significantly different from the control (p > 0.05). The early weaning to formulated diet had detrimental effect on the growth of the larvae. In both experiments the C. mülleri-glucan group was the only group showing a positive growth rate in the period of weaning to dry feed. The microbial conditions in larval gut and water were monitored with respect to total colony forming units on Marine agar, and Vibrio- and Pseudomonas-like species on selective agars (TCBS and marine Pseudomonas Agar with CFC-supplement). The larvae were rapidly colonised after hatching, but no or weak effects of the stimulants were observed on the colonisation rates or the composition. The total CFU varied from 10 1 to 10 2 CFU per μg larva after initiation of the first feeding. The percentages of Pseudomonas-like bacteria increased throughout the period, whereas the levels of Vibrio-like bacteria were low and stable. The chrysolaminaran from the diatom C. mülleri was shown to be a promising candidate for use as an immunostimulatory feed additive, and which should be further explored. © 2006 Elsevier B.V. All rights reserved