1,003 research outputs found

    Structural Characterization and Anti-HSV-1 and HSV-2 Activity of Glycolipids from the Marine Algae Osmundaria obtusiloba Isolated from Southeastern Brazilian Coast

    Get PDF
    Glycolipids were extracted from the red alga Osmundaria obtusiloba from Southeastern Brazilian coast. The acetone insoluble material was extracted with chloroform/methanol and the lipids, enriched in glycolipids, were fractionated on a silica gel column eluted with chloroform, acetone and then methanol. Three major orcinol-positive bands were found in the acetone and methanol fractions, being detected by thin layer chromatography. The structures of the corresponding glycolipids were elucidated by ESI-MS and 1H/13C NMR analysis, on the basis of their tandem-MS behavior and HSQC, TOCSY fingerprints. For the first time, the structure of sulfoquinovosyldiacylglycerol from the red alga Osmundaria obtusiloba was characterized. This molecule exhibited potent antiviral activity against HSV-1 and HSV-2 with EC50 values of 42 µg/mL to HSV-1 and 12 µg/mL to HSV-2, respectively. Two other glycolipids, mono- and digalactosyldiacylglycerol, were also found in the alga, being characterized by ESI-MS/MS. The structural elucidation of algae glycolipids is a first step for a better understanding of the relation between these structures and their biological activities

    Thyroid control over biomembranes: VI. Lipids in liver mitochondria and microsomes of hypothyroid rats

    Full text link
    The lipids of liver mitochondria prepared from normal rats and from rats made hypothyroid by thyroidectomy and injection with131INa contained similar amounts, per mg protein, of total lipids, phospholipids, neutral lipids and lipid phosphorus. Hypothyroidism caused a doubling of the relative amounts of mitochondrial cardiolipins (CL; to 20.5% of the phospholipid P) and an accompanying trend (although statistically not significant) toward decreased amounts of both phosphatidylcholines (PC) and phosphatidylserines (PS), with phosphatidylethanolamines (PE) remaining unchanged. The pattern of elevated 18∶2 fatty acyl content and depleted 20∶4 acyl groups of the mitochondrial phospholipids of hypothyroid preparations was reflected to varying degrees in the resolved phospholipids, with PC showing greater degrees of abnormality than PE, and CL showing none. Hypothyroidism produced the same abnormal pattern of fatty acyl distributions in liver microsomal total lipids as was found in the mitochondria. Hypothyroid rats, when killed 6 hr after injection of [1‐14C] labeled linoleate, showed the following abnormalities: the liver incorporated less label into lipids, and converted 18∶2 not exclusively to 20∶4 (as normals do) but instead incorporated the label mainly into saturated fatty acids. These data, together with the known decrease in β‐oxidation, suggest that hypothyroidism involves possible defective step(s) in the conversion of 18∶2 to 20∶4.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142296/1/lipd0328.pd

    Ganglioside composition and histology of a spontaneous metastatic brain tumour in the VM mouse

    Get PDF
    Glycosphingolipid abnormalities have long been implicated in tumour malignancy and metastasis. Gangliosides are a family of sialic acid-containing glycosphingolipids that modulate cell–cell and cell–matrix interactions. Histology and ganglioside composition were examined in a natural brain tumour of the VM mouse strain. The tumour is distinguished from other metastatic tumour models because it arose spontaneously and metastasizes to several organs including brain and spinal cord after subcutaneous inoculation of tumour tissue in the flank. By electron microscopy, the tumour consisted of cells (15 to 20 μm in diameter) that had slightly indented nuclei and scant cytoplasm. The presence of smooth membranes with an absence of junctional complexes was a characteristic ultrastructural feature. No positive immunostaining was found for glial or neuronal markers. The total ganglioside sialic acid content of the subcutaneously grown tumour was low (12.6 ± 0.9 μg per 100 mg dry wt, n= 6 separate tumours) and about 70% of this was in the form of N-glycolylneuraminic acid. In contrast, the ganglioside content of the cultured VM tumour cells was high (248.4 ± 4.4 μg, n= 3) and consisted almost exclusively of N-acetylneuraminic acid. The ganglioside pattern of the tumour grown subcutaneously was complex, while GM3, GM2, GM1, and GD1a were the major gangliosides in the cultured tumour cells. This tumour will be a useful natural model for evaluating the role of gangliosides and other glycolipids in tumour cell invasion and metastasis. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Brain Arachidonic Acid Incorporation and Turnover are not Altered in the Flinders Sensitive Line Rat Model of Human Depression

    Full text link
    Brain serotonergic signaling is coupled to arachidonic acid (AA)-releasing calcium-dependent phospholipase A2. Increased brain serotonin concentrations and disturbed serotonergic neurotransmission have been reported in the Flinders Sensitive Line (FSL) rat model of depression, suggesting that brain AA metabolism may be elevated. To test this hypothesis, (14)C-AA was intravenously infused to steady-state levels into control and FSL rats derived from the same Sprague-Dawley background strain, and labeled and unlabeled brain phospholipid and plasma fatty acid concentrations were measured to determine the rate of brain AA incorporation and turnover. Brain AA incorporation and turnover did not differ significantly between controls and FSL rats. Compared to controls, plasma unesterified docosahexaenoic acid was increased, and brain phosphatidylinositol AA and total lipid linoleic acid and n-3 and n-6 docosapentaenoic acid were significantly decreased in FSL rats. Several plasma esterified fatty acids differed significantly from controls. In summary, brain AA metabolism did not change in FSL rats despite reported increased levels of serotonin concentrations, suggesting possible post-synaptic dampening of serotonergic neurotransmission involving AA

    Glycosylinositol phosphorylceramides from <i>Rosa cell</i> cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II

    Get PDF
    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C(18) trihydroxylated mono-unsaturated long-chain base and a C(24) monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs’ extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC–B–RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC–B–RG-II complex gives the first molecular explanation of the wall–membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process
    corecore