7 research outputs found

    Impact of breastfeeding on the incidence of respiratory and somatic pathology in infants and preschool children

    Get PDF
    The purpose of the study is to evaluate the history and morbidity data in children with different durations of breastfeeding.Цель исследования – оценка анамнеза, данных заболеваемости у детей с различной продолжительностью грудного вскармливания

    Conceptual design report for the LUXE experiment

    Get PDF
    This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout

    Conceptual design report for the LUXE experiment

    Get PDF
    AbstractThis Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout.</jats:p

    Characterization of 4 inch GaAs:Cr wafers

    No full text
    Producing of large area matrix detectors based on semiconductor materials with high atomic number suitable for the registration of the synchrotron radiation of high intensity in the photon energy range 20–90 keV is a relevant technological challenge of our time. This will develop a fundamentally new experimental base of scientific research conducted at leading X-ray synchrotron centers with high luminosity beams. The paper analyzes the possibility of using 4 inch gallium arsenide wafers to create a high-resistive GaAs:Cr detector quality structures on their basis and detector arrays of large area

    Characterization of 4 inch GaAs:Cr wafers

    No full text
    Producing of large area matrix detectors based on semiconductor materials with high atomic number suitable for the registration of the synchrotron radiation of high intensity in the photon energy range 20–90 keV is a relevant technological challenge of our time. This will develop a fundamentally new experimental base of scientific research conducted at leading X-ray synchrotron centers with high luminosity beams. The paper analyzes the possibility of using 4 inch gallium arsenide wafers to create a high-resistive GaAs:Cr detector quality structures on their basis and detector arrays of large area

    The second Russo‐Chechen conflict (1999 to date): ‘A modern military operation'?

    No full text
    corecore