569 research outputs found

    Work function determination of promising electrode materials for thermionic energy converters

    Get PDF
    The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys

    Socio-Environmental Factors Associated With Pubertal Development in Female Adolescents: The Role of Prepubertal Tobacco and Alcohol Use

    Get PDF
    This cross-sectional study of 3,106 female adolescents, aged 11–21 years, evaluated the association between prepubertal alcohol and tobacco use and the onset of puberty. Ages at initial breast development, body hair growth, and menarche were self-reported. Prepubertal alcohol and tobacco use were defined as the age at first use before the age of pubertal development and accompanied by regular use. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox proportional hazard models. Logistic regression was used to estimate the association between substance use and delayed puberty, defined as lack of breast development by the age of 13 years

    Implication of polymerase recycling for nascent transcript quantification by live cell imaging.

    Get PDF
    Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state

    Efficient Non-Viral Ocular Gene Transfer with Compacted DNA Nanoparticles

    Get PDF
    BACKGROUND: The eye is an excellent candidate for gene therapy as it is immune privileged and much of the disease-causing genetics are well understood. Towards this goal, we evaluated the efficiency of compacted DNA nanoparticles as a system for non-viral gene transfer to ocular tissues. The compacted DNA nanoparticles examined here have been shown to be safe and effective in a human clinical trial, have no theoretical limitation on plasmid size, do not provoke immune responses, and can be highly concentrated. METHODS AND FINDINGS: Here we show that these nanoparticles can be targeted to different tissues within the eye by varying the site of injection. Almost all cell types of the eye were capable of transfection by the nanoparticle and produced robust levels of gene expression that were dose-dependent. Most impressively, subretinal delivery of these nanoparticles transfected nearly all of the photoreceptor population and produced expression levels almost equal to that of rod opsin, the highest expressed gene in the retina. CONCLUSIONS: As no deleterious effects on retinal function were observed, this treatment strategy appears to be clinically viable and provides a highly efficient non-viral technology to safely deliver and express nucleic acids in the retina and other ocular tissues

    Water table dynamics in tile-drained fields

    Get PDF
    ABSTRACT We present a method for simulating water table dynamics in tiledrained fields that are subject to intermittent precipitation or irrigation. A stochastic state equation for the water table height midway between drain laterals is obtained by adding a random noise term to van Schilfgaarde's deterministic drainage model. The random term accounts for dynamics not modeled by van Schilfgaarde's equation, which is based on numerous simplifying assumptions. The continuousdiscrete Kalman filter is used to obtain an estimate of the time variation of the water table height, as well as the variance of the estimate. The method is demonstrated using experimental data from the literature and is shown to have advantages over alternative approaches. Additional testing is necessary to fully assess the validity of the stochastic state equation and the utility of the filtering procedure

    Reinterpreting Historical Data for Evidence-Based Shrubland Management

    Get PDF
    Long-term vegetation dynamics in the Chihuahuan Desert of southern New Mexico have been intensively studied for over a century, and interpretations of the broad scale drivers of these dynamics are numerous. We now understand that interpretation of spatially heterogeneous change requires a more nuanced, contextualized, and detailed understanding of edaphic features and landscape characteristics. Recently, state and transition models (STMs) have been employed to represent landscape-specific dynamics for each ecological site within a Major Land Resource Area (MLRA). We re-examined data characterizing vegetation across the public lands of the northern Chihuahuan Desert at two points in time, the 1930s and 2005. In this study, our objectives were to (1) develop geospatial data layers of historical and current vegetation states, (2) compare vegetation states between the 1930s and 2005 where the two data layers overlap, and (3) interpret any major vegetation state changes over this ~70 year period within the context of specific ecological sites. It was our hypothesis that ecological dynamics would vary in interpretable ways among ecological sites. Three primary observations are drawn from our results: (1) the bulk of the region was relatively stable during this period, (2) approximately the same amount of area experienced increased grass dominance as experienced increased shrub dominance, and (3) dynamics are strongly influenced by the properties of specific ecological sites. Major vegetation state changes, involving either increased grass dominance or increased shrub dominance, only occurred to any extent in 11 of 18 ecological sites within this study area. More important to management, significant increases in shrubs occurred within only four ecological sites. These sites were sandy, deep sand, shallow sandy, and gravelly sand. All other ecological sites within this region were relatively stable over the ~70 year period between observations. The obvious management implication is the importance of stratifying by ecological site prior to application of shrub control treatments

    Wakeful rest alleviates interference-based forgetting

    Get PDF
    Retroactive interference (RI)—the disruptive influence of events occurring after the formation of a new memory—is one of the primary causes of forgetting. Placing individuals within an environment that postpones interference should, therefore, greatly reduce the likelihood of information being lost from memory. For example, a short period of wakeful rest should diminish interference-based forgetting. To test this hypothesis, participants took part in a foreign language learning activity and were shown English translations of 20 Icelandic words for immediate recall. Half of the participants were then given an 8-min rest before completing a similar or dissimilar interfering distractor task. The other half did not receive a rest until after the distractor task, at which point interference had already taken place. All participants were then asked to translate the Icelandic words for a second time. Results revealed that retention was significantly worse at the second recall test, but being allowed a brief rest before completing the distractor task helped reduce the amount of forgetting. Taking a short, passive break can shield new memories from RI and alleviate forgetting.ERAS Scheme, University of Wolverhampto
    corecore