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ABSTRACT

We present a method for simulating water table dynamics in tile-
drained fields that are subject to intermittent precipitation or irriga-
tion. A stochastic state equation for the water table height midway
between drain laterals is obtained by adding a random noise term to
van Schilfgaarde’s deterministic drainage model. The random term
accounts for dynamics not modeled by van Schilfgaarde’s equation,
which is based on numerous simplifying assumptions. The continuous-
discrete Kalman filter is used to obtain an estimate of the time varia-
tion of the water table height, as well as the variance of the estimate.
The method is demonstrated using experimental data from the litera-
ture and is shown to have advantages over alternative approaches.
Additional testing is necessary to fully assess the validity of the sto-
chastic state equation and the utility of the filtering procedure.

IN AREAS WITH SHALLOW GROUNDWATER, it is common
practice to use subsurface drainage systems to lower
the water table. Drainage systems prevent waterlogging
of surface soils and thereby enhance the potential for
agricultural development. Researchers have studied ex-
tensively the problem of predicting water table shapes,
depths, and dynamics for different drainage designs and
soils; an overview can be found in the monograph edited
by van Schilfgaarde (1974a). Because of the continuing
desire to make low quality lands agriculturally produc-
tive, and because of present-day concerns about the
effect of agricultural practices on water quality and sup-
ply, soil drainage systems remain a subject of practical
and theoretical interest.

Mathematical modeling is frequently used to study
water table dynamics in drained fields. Available models

-range from classic analytical drainage equations that are
based on the Dupuit-Forchheimer theory of groundwa-
ter flow to numerical models that solve some form of the
Richards’ equation. Irrespective of their sophistication,
mathematical drainage models will always be simplified
representations of the actual flow and drainage pro-
cesses that occur in the field. Consequently, modeling
estimates and predictions of water table dynamics are
approximate or uncertain.

As an alternative to modeling, water table dynamics
can be studied by monitoring the water table in a drained
soil. Direct measurements of the water table eliminate
much uncertainty but are labor intensive and expensive,
cannot be used to make forecasts, and are not easily
extrapolated to other drainage designs and soils.

The objectives of our study were to develop a stochas-
tic state equation that describes water table dynamics
in tile-drained fields, and to use a filtering method to
obtain estimates and predictions of the water table dy-
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namics. Developing the state equation within a stochas-
tic framework allows us to perform simulations while
acknowledging and accounting for the approximate na-
ture of the mathematical model. The filtering method
combines modeling and field measurements to obtain
estimates and predictions that are an improvement over
those obtained using either measurements or modeling
exclusively. Filtering methods are used widely in infor-
mation and control sciences (e.g., Gelb, 1974) and have
also been used in surface and subsurface hydrology (e.g.,
Bras and Rodriquez-Iturbe, 1985; Morkoc et al., 1985;
Milly and Kabala, 1985; Graham and McLaughlin, 1989;
Or and Hanks, 1992; Parlange et al., 1993; Katul et al.,
1993; Nielsen et al., 1994).

This paper is organized as follows. First, van Schilf-
gaarde’s (1965) deterministic model for the midway wa-
ter table height is presented. A stochastic state model
for the water table height is then obtained by adding a
random noise term to van Schilfgaarde’s equation. Next,
we introduce a measurement model that accounts for
spatial averaging of water table measurements and mea-
surement errors. Finally, the Kalman filter is used to
estimate and predict the midway water table dynamics,
as well as the variance of the estimates and predictions.
The filtering method is demonstrated using field data
from the literature.

THEORY

Deterministic Model

Figure 1 shows a vertical cross section of an idealized tile-
drained field. The drains are located a distance h above an
impervious layer, with drain spacing L and effective drain
diameter d. Midway between drain laterals, the water table
height relative to the drain elevation is denoted m.

Van Schilfgaarde (1965, 1970, 1974b) describes the time
variation of m in response to intermittent recharge as

dm m
— 4 == 1
R (1]

where K is the isotropic saturated hydraulic conductivity, fis
the drainable porosity, and u(t) is the groundwater recharge
rate. The dimensionless constant F(h/L, d/L) is from Kirk-
ham’s (1958) solution for the steady-state water table height
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The dimensionless parameter C was introduced by Bouwer
and van Schilfgaarde (1963) to correct for the fact that the
rate of water table drop midway between drains is generally
different from the average rate of drop between drains. The
parameter C may be thought of as the ratio of the average
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Fig. 1. Vertical cross section of an idealized tile-drained field.

downward water table flux between drains to the flux midway
between drains, and usually has a value between 0.8 and 1.0
(Bouwer and van Schilfgaarde, 1963). The parameter B has
units of time and combines the soil properties f and K, the
system geometry parameters L and f, and the correction factor
C into a single system-defining constant (van Schilfgaarde,
1974b). The key assumption underlying Eq. [1] is that the
instantaneous drainage rate midway between drains is equal
to the steady-state drainage rate that corresponds with the
water table height m, where the steady-state drainage rate is
given by Kirkham’s (1958) solution to the steady flow problem.

Stochastic State Model

Equation [1]is an approximate model that relies on idealiza-
tions of soil properties, system geometry, and water flow pro-
cesses. When an approximate model is used to describe a
complex system, it may be desirable to quantify in some way
the dynamics that are not accounted for in the model. The
simplifications in Eq. [1] are too numerous and ill-defined to
make an exact accounting. Rather than attempting to improve
or refine Eq. [1], we assume that the unmodeled dynamics
can be represented as an additive stochastic error term. With
this assumption, water table dynamics are described by the
stochastic state model

dx | x '
—+==u+w, 3

d B 3]
where x is the state variable that corresponds with the midway
water table height and w is a white noise, zero-mean random
process with spectral density g. For simplicity, we take g to
be constant in time.

Due to the randomness in Eq. [3], we can describe or predict
the time evolution of x only in a statistical sense. The equation
governing the time variation of the mean of x, (x), is found
by taking the expectation of Eq. [3],

dx X
W, 0, n
dr B
Similarly, it can be shown that the time variation of the state
variance, P = {(x — (x))?), is (e.g., Lewis, 1986)

dP 2P
- [5]

The Kalman Filter

Given initial conditions (x(t)) = x, and P(t,) = P,, Eq. [4]
and [5] can be used to predict the time evolution of (x) and

P. Suppose at time # > £, a measurement of x becomes avail-
able. We would like to use the information provided by the
new measurement to update our predictions of (x) and P. The
process of predicting and updating as measurements become
available is known as filtering.

Let the state measurement be represented as

e = x(t) + v [6]

where zy is the measured state at time #, x(#) is the (unknown)
true state at time f, and v, is a zero-mean random measure-
ment error with variance r,. The error term v, accounts for
uncertainty arising from spatial averaging of point measure-
ments, as well as any instrument or operator error.

The projection Eq. [4] and [5] and the measurement Eq.
[6] form the basis of the filtering algorithm. Starting with
estimates of x, and Py, the projection equations are used to
predict the evolution of {(x) and P up until the time at which
a state measurement becomes available. At that time, a linear
combination of the projected and the measured state is taken
as the updated state estimate, and the state variance estimate
is updated accordingly. :

More specifically, let {x(#))™ be the state projected by Eq.
[4] at time #, prior to the measurement update, and (x(t,))*
be the estimated state at time ¢, after the update. Likewise,
let P(t)~ and P(#,)* be, respectively, the projected and up-
dated state variance at time f,. Assuming w and v are uncorre-
lated with x; and each other, the Kalman filter equations for
updating the state and variance estimates are (e.g., Lewis,
1986):

EENT = @)™ + Kz — (x(0 )] [7]
P(t)™ = (1 — K)P(t)~ [8]
K, = P(t)7/[P(t)~ + r] [9]

where K, is referred to as the Kalman gain. Equations [7]
through [9] are known as the continuous-discrete form of the
Kalman filter because of the time-continuous projection Eq.
[4] and [5] and the discrete measurement Eq. [6]. From [7]
and [9], it is seen that (x(#,))* is a linear combination of (x(¢,))~
and z,, with the weight given to the two terms being deter-
mined by the relative size of the projected state variance P(#)~
and the measurement variance r,. When P(¢,) " is large relative
to r,, more weight is given to the measurement than to the
projection. Conversely, when P(#,)~ is small relative to r,, more
weight is given to the projection than to the measurement.

If v and w are Gaussian variates and the initial conditions
and model parameters are known exactly, it can be shown
that the Kalman filter provides an estimate of x that is optimal
in the mean square error sense (e.g., Gelb, 1974). In the current
problem we must estimate some model parameters and may
not be able to verify the other conditions, meaning the filtered
estimate may be suboptimal.

Parameter Value Identification

Parameters in the state and measurement models are L, h,
d, f, K, C, g, r, xp, and Py. Most of the parameters can be
estimated from field measurements, except for the model error
spectral density ¢ and the initial state variance P,. It is there-
fore necessary to obtain values for these parameters by fitting
the filter to a series of state measurements (e.g., Bras and
Rodriquez-Iturbe, 1985).

Assume we have the series of state measurements z, with
variances r,, k = 1, ..., N. Using the method of maximum
likelihood, values for ¢ and P, are found by maximizing the
objective function (Bras and Rodriquez, 1985, p. 492-496)
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subject to the constraint
q, P,=0 [10b]

The optimization was accomplished using a steepest-descent
algorithm.

[10a]

FIELD EXPERIMENT

Kirkham and de Zeeuw (1952) present field measurements
that are designed to test soil drainage theory. The experiment
site is located in the Netherlands and is a flat field that is
reported to be “an area of high uniformity and low permeabil-
ity” (Kirkham and de Zeeuw, 1952). The surface soil is a fine
sand that contains some silt and clay. The low permeability
is attributable to the clay and silt content being large enough
to fill the space between sand particles, but not large enough
to develop good soil structure (Kirkham and de Zeeuw, 1952).
A relatively impermeable peat layer exists at 1.8 m below the
surface. Tile drains are located 0.97 m below the surface and
have an effective diameter of 0.09 m (Kirkham, 1958).

Approximately 75 saturated hydraulic conductivity mea-
surements were made across the field at various depths using
the auger hole method and the piezometer method (Kirkham
and de Zeeuw, 1952). Above the impermeable layer at 1.8 m,
the conductivity measurements vary from =50 to 150 mm d~,
with a trend of decreasing conductivity with depth (see scatter
plot of conductivity values in Fig. 4, Kirkham and de Zeeuw,
1952). Two measurements estimated the drainable porosity
to be <6% in the soil layer from 0.01 to 0.19 m below the
soil surface, and <2.5% in the layer from 0.3 to 0.6 m below
the surface. A subsequent analysis by Kirkham (1964, p. 588)
suggested that the effective drainable porosity was around
2%. The measured daily rainfall is shown in Fig. 2. Rainfall
measured on Days 3, 10, and 17 are 2-d totals (measurements
were not made on Days 2, 9, and 16). The field was cropped
in clover (Trifolium spp.) during the experiment. Evapotrans-
piration rates were low throughout the study; open-pan evapo-
ration averaged 0.4 mm d~.

Midway water table heights were measured daily for 21 d
(24 November—14 December). Observation wells were located
midway between drains and on a line perpendicular to the
tile lines. The reported heights are the average of measure-
ments made in six wells. The standard deviations of the daily
measurements are also given (Kirkham and de Zeeuw, 1952).
Results are reported for drain spacings of 8, 10, 12, and 16 m;
we focus on the 8-m spacing data.

RESULTS

To apply Eq. [4] it is necessary to specify the relation-
ship between rainfall and the groundwater recharge rate
u. As a first approximation, we assume the rainfall rate
is constant between rainfall measurements and take the
recharge rate to be equal to the rainfall rate divided by
the drainable porosity (no time lag),

u(t) = }C(L) L1 > 1> 1 [11]

where R, is the measured rainfall between times ¢, and
t+1- Evapotranspiration is assumed to be negligible.

ey — K

25 —

20 —
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Day

Fig. 2. Rainfall measured by (Kirkham and de Zeeuw, 1952). Mea-
surements were not made on Days 2, 9, and 16; measurements on
Days 3, 10, and 17 are 2-d totals.

This simple representation of recharge may be a reason-
able approximation given the shallow water table and
low drainable porosity.

Based on the field measurements discussed above,
we arrive at the following values for the model parame-
ters: L = 8m,d = 0.09 m, h = 0.86 m, f = 0.02, and
K = 0.1 m d7%. The value K = 0.1 m d™! is near the
middle of the range of conductivities measured by Kirk-
ham and de Zeeuw, 1952) and is the value used by
Kirkham (1958) in his steady-state analysis of the same
data set. The drainable porosity value of 2% is based
on Kirkham’s (1964) calculated value of 1.96% and the
field measurement that indicated a drainable porosity
of <2.5% at depths where the water table is expected
to be found most often. The choice of parameter values
for drainable porosity and hydraulic conductivity is fur-
ther discussed below. Because the data do not provide
a basis for choosing otherwise, the flux correction pa-
rameter is assumed to be unity (C = 1). We take the
first day of measurements to be Day Zero, and set the
initial state x, equal to the first water table measurement
zo with ry, = 0. The measurement variance for the next
20d,n, k= 1,...,20,is equal to the sample variance
of the six spatially averaged daily water table measure-
ments; we thus assume any instrument or operator error
is negligibly small.

As noted earlier, we obtain values for g and P; by
fitting the filter to a series of state measurements. We
use the first 10 water table measurements, z,, k =
1,..., 10, and fit the two parameters by maximizing
Eq. [10]. Ordinarily it would be advisable to use all
available data when fitting unknown parameters, but
here we use only the first 10 measurements so that the
filter can be evaluated on data for which there was no
filter or model calibration. The result of the fitting is
g = 00026 m*d~' and P, = 0 m%.

With all parameters quantified, the Kalman filter is
now used to estimate the midway water table height
from time ¢ = 0 through time ¢ = 20 d. The filtered
water table estimate is shown in Fig. 3. The solid line
is (x) and the dashed lines are (x) = 2(P)%. Also shown
for reference are the measured water table heights zy
(solid squares) and measurement error standard devia-
tions [error bars equal to z, * 2(r,)*’]. The filtered water
table provides a good representation of the water table
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Fig. 3. Water table dynamics modeled using the Kalman filter. The
water table height is relative to the drain elevation. The solid line
is the state estimate (x) and the dashed lines are (x) = 2(P)"%. Also
shown are the measured water table heights z, (solid squares) and
measurement standard deviations [error bars equal to z, = 2(n)%].

dynamics. At the time of the measurement updates, the
state variance P is, in general, slightly smaller than the
measurement error variance r,. As expected from filter-
ing theory, the state variance (uncertainty) grows as the
water table is projected between measurement updates.

As noted above, filtering combines measurement and
modeling approaches. For comparison purposes, it is
worthwhile to consider what can be obtained using ei-
ther measurement or modeling exclusively. In the case
of using only measurements, no information exists about
the evolution of the water table or the uncertainty be-
tween measurements, so we can only assume that the
measured water table and its uncertainty remains the
same until a new measurement becomes available. This
type of measurement model has been referred to as the
persistence model (Milly and Kabala, 1985). Figure 4
shows the persistence model for the midway water table
height. The measurements are shown as solid squares.
The error bars arise from spatially averaging the six
measurements and are *2(r,)%.

The water table prediction resulting when only mod-
eling is used is shown in Fig. 5. This result is obtained
by solving Eq. [1] subject to the initial condition m(t) =
my, where my, is the water table measurement made at
time zero. The water table height used as the initial
condition is shown as a solid square. The remaining
measurements are not used in the simulation and are
shown as open squares. The model prediction is shown
as a solid line and is a reasonable representation of
the measured data. However, this approach does not
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Fig. 4. Water table dynamics as represented by the persistence model.
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Fig. 5. Water table dynamics modeled using the deterministic model,
Eq. [1]. Measurements shown as open squares are not used and
are included only for comparison.

provide any information about the uncertainty of the
prediction.

When there is an abundance of data available for
constructing the persistence model, it may be argued
that for many practical purposes the persistence model
is a sufficient representation of the water table and
related uncertainties, particularly if some sort of inter-
polation scheme is assumed. However, we emphasize
that once sufficient data is obtained to calibrate the
filter, it is possible to predict the water table with much
less data than are required by the persistence model.
Suppose, for example, we made water table measure-
ments for 10 d and fitted the filter parameters ¢ and P,
as before. Then suppose we make only one more water
table measurement, at Day 15. The resulting filtered
water table is shown in Fig. 6, and the persistence model
in Fig. 7. Figure 6 shows that the state variance grows
initially following the measurement at Day 10 and then
reaches a maximum value, which is determined by g,
about 1 d later (Day 11). The variance is reduced follow-
ing the measurement at Day 15 and then grows again
as the prediction gets further away from the update. In
this case, the filtering method is clearly superior to the
persistence method in terms of modeling water table dy-
namics.

Alternatively, we could suppose that we stop collect-
ing water table data entirely after fitting g and P,. In
this case, no updates are made after Day 10 and the
filter is used only for prediction. The resulting filtered
water table prediction is shown in Fig. 8 and is similar
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Fig. 6. Filtered water table dynamics. Measurements shown as open
squares are included for comparison and are not used in the fil-
ter calculations.
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Fig. 7. The persistence model for the case of limited water table data.

to that seen in Fig. 6, except of course for a lack of
reduction in the state variance at Day 15.

Fitting K and f

An interesting issue is the appropriateness of fitting
certain model parameters rather than relying on physi-
cal measurements. There is, after all, considerable ambi-
guity as to how point measurements of spatially variable
soil properties can be translated into the effective,
lumped parameters that are used in the state model. For
example, we arbitrarily took the (approximate) median
value of the conductivity measurements to be the effec-
tive conductivity, although it could be argued that an-
other value may be equally or more appropriate.

Values for K and f were obtained independent of
the Kalman filter equations by fitting the deterministic
model, Eq. [1], to the water table data. The fitting is
accomplished by minimizing

N
J(f, Klze) = Z[ze — m()]? [12a]

k=1

subject to the constraints
K=0 [12b]
0=f=1 [12¢]

where m(t,) is the water table height at t = ¢, computed
by Eq. [1]. We again use the first N = 10 measurements
and the resulting parameters are f = 0.018 and K =
0.12 m d™!, which are similar to the field measurements
used above (f = 0.02 and K = 0.10 m d7'). In this
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Fig. 8. Predicted water table dynamics using the Kalman filter. Mea-
surements shown as open squares are included for comparison and
are not used in making the prediction.
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Fig. 9. Deterministic model prediction of water table dynamics when
fand K are fit.

instance, the fitted values are so close to the measured
values that we expect that model predictions will be
affected only minimally. The water table predicted by
the deterministic model, Eq. [1], using the fitted parame-
ter values is shown in Fig. 9. As expected, there is only
a slight change from the prediction seen in Fig. 5. The
closeness of the measured and fitted parameter values
provides support for the validity of Eq. {1], although it
should be remembered that the “measured” drainable
porosity value of 2% is based on a single field measure-
ment that indicated a drainable porosity of <2.5%, and
on Kirkham’s (1964) analysis that calculated a drainable
porosity of 1.96%. Thus, claiming 2% as an indepen-
dently measured value may be questionable. In any
event, when model parameter data are scarce or uncer-
tain, fitting the parameters provides a viable alternative.

When the fitted values of fand K are used, the subse-
quent optimization of Eq. [10] with N = 10 yields g =
0.0013 m? d! and Py, = 0.00097 m?. Because K and f
have been fitted, Eq. [1] better matches the data and
the optimal model error spectral density g is found to
be smaller than before (g = 0.0026 m*>d™"). The resulting
filtered water table is shown in Fig. 10. The smaller
model error results in a state variance that is generally
smaller than that shown in Fig. 3.

SUMMARY AND CONCLUSIONS

We have presented a method for estimating and pre-
dicting water table dynamics in tile-drained fields. A
stochastic state model was used to model the water table
height midway between drain laterals, and the Kalman
filter was used to estimate the time evolution of the

Water Table Height (m)
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Fig. 10. Filtered water table dynamics when f and K are fit.
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state mean and variance. The method was demonstrated
using experimental data and was shown to have advan-
tages over methods that rely exclusively on either mod-
eling or field measurements.

With the widespread availability of high-speed com-
puters, the trend in simulating drainage and other sub-
surface processes has been to develop more and more
complex numerical models based on partial differential
equations with spatially distributed parameters. The jus-
tification for the more complex models is that older
analytical models with lumped parameters invoke too
many simplifying assumptions and are not sufficiently
accurate. However, difficulties in validating numerical
models, the large data requirements of numerical mod-
els, and the high computational costs of numerical mod-
els may cast some doubt on the utility of the numeri-
cal approach.

In ageneral sense, the approach presented here repre-
sents an effort to overcome some of the limitations of
an analytical water table model by recasting it as a
stochastic state model that accounts for simplifying as-
sumptions through the introduction of an error term.
The resulting model equations are easy to solve and
have relatively minor data requirements. Although the
results presented here look promising, the success of
this approach can be assessed only after testing it on a
wide range of soil and drainage conditions.

With regard to the particular model used in this work,
some modifications may be necessary for more general
usage. First, in determining the recharge rate u, it will
be necessary to provide a more detailed account of the
surface and vadose zone water fluxes. In fields with high
evapotranspiration rates and thick unsaturated zones,
the simple rainfall-recharge relationship used here will
be inadequate. Second, the soil surface elevation does
not enter into Eq. [3], and consequently there is no
provision for surface ponding. For a sufficiently high
recharge, the model predicts that the water table rises
to a height that is above the soil surface. This occurred,
for example, when the filter was used to estimate water
table dynamics in the Kirkham and de Zeeuw (1952)
field with drains spaced 16 m apart. In such cases, it
will be necessary to switch to a ponding—runoff model
when the water table reaches the soil surface. Similarly,
there is no accounting for the effects of regional flow
on the water table elevation. Lastly, in some soils, the
heterogeneity of hydraulic properties may result in wa-
ter table dynamics that are significantly different than
that described by Eq. [1] and the assumption that un-
modeled dynamics can be accounted for with an additive
stochastic error term may be inappropriate. For the

case of layered heterogeneity, it is possible to write an
equation for the time variation of m that is in the same
form as Eq. [1] (see van Schilfgaarde, 1965, 1970, 1974b).
The use of this equation should alleviate some difficult-
ies that may be encountered in the analysis of layered
soils.
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