196 research outputs found

    Understanding the legacy of widespread population translocations on the post-glacial genetic 2 structure of the European beech, Fagus sylvatica L.

    Get PDF
    Aim  Human impacts have shaped species ranges throughout the Holocene. The putative native range of beech, Fagus sylvatica, in Britain was obscured by its late post-glacial arrival and subsequent extensive management. We sought to differentiate the interacting effects of post-glacial colonization and anthropic impacts on the current genetic structure and diversity of beech by contrasting phylogeographic signals from putatively natural and translocated populations.  Location  Samples were obtained from 42 sites throughout Great Britain.  Methods  Chloroplast and nuclear microsatellite marker data were interpreted alongside palynological, historical and anecdotal evidence. Genetic structure was analysed using individual-based Bayesian assignment methods and colonization history was analysed using an approximate Bayesian computation framework.  Results  Phylogeographic patterns suggested contemporary forests originated from putative native south-eastern populations. High haplotypic diversity was found near the entry point of beech into Britain. Cryptic signals of isolation-by-distance persisted in the putative native range, together with higher levels of gene diversity in nuclear markers. Weak regional nuclear genetic structure suggested high levels of contemporary gene flow throughout the country.  Main conclusions  Genetic patterns driven by natural colonization persist despite widespread anthropic intervention. Forests in northerly regions were established from forests in the putative native range, diminishing the credibility of any present boundary between the native and non-native range of beech in Britain

    A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, Bactericera cockerelli (Sulc, 1909) and development of a psyllid barcoding database

    Get PDF
    The accurate and rapid identification of insect pests is an important step in the prevention and control of outbreaks in areas that are otherwise pest free. The potato-tomato psyllid Bactericera cockerelli (Sulc, 1909) is the main vector of 'Candidatus Liberibacter solanacearum' on potato and tomato crops in North America and New Zealand; and is considered a threat for introduction in Europe and other pest-free regions. This study describes the design and validation of the first species-specific TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of B. cockerelli. The assay detected B. cockerelli genomic DNA from adults, immatures, and eggs, with 100% accuracy. This assay also detected DNA from cloned plasmids containing the ITS2 region of B. cockerelli with 100% accuracy. The assay showed 0% false positives when tested on genomic and cloned DNA from 73 other psyllid species collected from across Europe, New Zealand, Mexico and the USA. This included 8 other species in the Bactericera genus and the main vectors of 'Candidatus Liberibacter solanacearum' worldwide. The limit of detection for this assay at optimum conditions was 0.000001ng DNA (similar to 200 copies) of ITS2 DNA which equates to around a 1:10000 dilution of DNA from one single adult specimen. This assay is the first real-time PCR based method for accurate, robust, sensitive and specific identification of B. cockerelli from all life stages. It can be used as a surveillance and monitoring tool to further study this important crop pest and to aid the prevention of outbreaks, or to prevent their spread after establishment in new areas

    Performance of chemically modified reduced graphene oxide (CMrGO) in electrodynamic dust shield (EDS) applications

    Full text link
    Electrodynamic Dust Shield (EDS) technology is a dust mitigation strategy that is commonly studied for applications such as photovoltaics or thermal radiators where soiling of the surfaces can reduce performance. The goal of the current work was to test the performance of a patterned nanocomposite EDS system produced through spray-coating and melt infiltration of chemically modified reduced graphene oxide (CMrGO) traces with thermoplastic high-density polyethylene (HDPE). The EDS performance was tested for a dusting of lunar regolith simulant under high vacuum conditions (~10-6 Torr) using both 2-phase and 3-phase configurations. Uncapped (bare) devices showed efficient dust removal at moderate voltages (1000 V) for both 2-phase and 3-phase designs, but the performance of the devices degraded after several sequential tests due to erosion of the traces caused by electric discharges. Further tests carried out while illuminating the dust surface with a UV excimer lamp showed that the EDS voltage needed to reach the maximum cleanliness was reduced by almost 50% for the 2-phase devices (500 V minimum for rough and 1000 V for smooth), while the 3-phase devices were unaffected by the application of UV. Capping the CMrGO traces with low-density polyethylene (LDPE) eliminated breakdown of the materials and device degradation, but larger voltages (3000 V) coupled with UV illumination were required to remove the grains from the capped devices.Comment: 22 pages, 7 figure

    Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    Get PDF
    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs ofAMY2A/AMY2B. Read-depth and experimental data showthat different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number.We showthat the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations

    High-Level Expression of Notch1 Increased the Risk of Metastasis in T1 Stage Clear Cell Renal Cell Carcinoma

    Get PDF
    Background: Although metastasis of clear cell renal cell carcinoma (ccRCC) is basically observed in late stage tumors, T1 stage metastasis of ccRCC can also be found with no definite molecular cause resulting inappropriate selection of surgery method and poor prognosis. Notch signaling is a conserved, widely expressed signal pathway that mediates various cellular processes in normal development and tumorigenesis. This study aims to explore the potential role and mechanism of Notch signaling in the metastasis of T1 stage ccRCC. Methodology/Principal Findings: The expression of Notch1 and Jagged1 were analyzed in tumor tissues and matched normal adjacent tissues obtained from 51 ccRCC patients. Compared to non-tumor tissues, Notch1 and Jagged1 expression was significantly elevated both in mRNA and protein levels in tumors. Tissue samples of localized and metastatic tumors were divided into three groups based on their tumor stages and the relative mRNA expression of Notch1 and Jagged1 were analyzed. Compared to localized tumors, Notch1 expression was significantly elevated in metastatic tumors in T1 stage while Jagged1 expression was not statistically different between localized and metastatic tumors of all stages. The average size of metastatic tumors was significantly larger than localized tumors in T1 stage ccRCC and the elevated expression of Notch1 was significantly positive correlated with the tumor diameter. The functional significance of Notch signaling was studied by transfection of 786-O, Caki-1 and HKC cell lines with full-length expression plasmids of Notch1 and Jagged1

    Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features

    Get PDF
    Some breast cancers have been shown to contain a small fraction of cells characterized by CD44+/CD24−/low cell-surface antigen profile that have high tumor-initiating potential. In addition, breast cancer cells propagated in vitro as mammospheres (MSs) have also been shown to be enriched for cells capable of self-renewal. In this study, we have defined a gene expression signature common to both CD44+/CD24−/low and MS-forming cells. To examine its clinical significance, we determined whether tumor cells surviving after conventional treatments were enriched for cells bearing this CD44+/CD24−/low-MS signature. The CD44+/CD24−/low-MS signature was found mainly in human breast tumors of the recently identified “claudin-low” molecular subtype, which is characterized by expression of many epithelial-mesenchymal-transition (EMT)-associated genes. Both CD44+/CD24−/low-MS and claudin-low signatures were more pronounced in tumor tissue remaining after either endocrine therapy (letrozole) or chemotherapy (docetaxel), consistent with the selective survival of tumor-initiating cells posttreatment. We confirmed an increased expression of mesenchymal markers, including vimentin (VIM) in cytokeratin-positive epithelial cells metalloproteinase 2 (MMP2), in two separate sets of postletrozole vs. pretreatment specimens. Taken together, these data provide supporting evidence that the residual breast tumor cell populations surviving after conventional treatment may be enriched for subpopulations of cells with both tumor-initiating and mesenchymal features. Targeting proteins involved in EMT may provide a therapeutic strategy for eliminating surviving cells to prevent recurrence and improve long-term survival in breast cancer patients

    Selection of Resistant Bacteria at Very Low Antibiotic Concentrations

    Get PDF
    The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations
    corecore