89 research outputs found

    Conversion of a Simulator Written in C++ to JS and Optimizing the Simulation Parameters Using Evolutionary Algorithms

    Get PDF
    A discrete event simulator written in C++ is converted in to Java Script, that tracks the blood glucose level of a person in response to a timed sequence of diet and exercise activities. Its main objective is to capture the average impact of the various diet/exercise activities on the blood glucose level. The main aim for translation of the code in to Java Script is that the simulator can be hosted on the Google Firebase Cloud and can be available for the public use. The optimization of the simulator parameters such as excretionKidney_impact, glut4Impact_, glycolysisMinImpact_, gngImpact_, peakinsulinLevel_, glycolysisMaxImpact_, liverGlycogenBreakdownImpact_ and liverGlycogensyntheis_Impact is done using evolutionary algorithms, where the simulator is given base blood glucose level and peak blood glucose level as the input parameters to the simulator. The output produced from the evolutionary algorithms are compared and the best one is recommende

    The difficulty of eliminating donor leukocyte microchimerism in rat recipients bearing established organ allografts

    Get PDF
    Background. Unequivocal eradication of donor leukocyte microchimerism from recipients of long-surviving organ transplants has never been reported. Here we describe a drastic attempt to accomplish this objective. Methods. In control experiments, a rank order of microchimerism and of associated donor specific nonreactivity was produced in Brown-Norway (BN) rats by transplantation of Lewis (LEW) liver, bone marrow cell (BMC) and heart allografts under a brief course of tacrolimus. The degree of microchimerism at 60 and 110 days was estimated with semiquanitative immunocytochemical and PCR techniques. Tolerance at 110 days was assessed in the different control groups by challenge transplantation of naïve LEW hearts. In parallel experimental groups, an attempt was made to eliminate microchimerism from the BN recipients. The animals were submitted at 60 days to 9.5-Gy total body irradiation (TBI), reconstituted immediately with naïve BN BMC, and tested for donor specific nonreactivity by LEW heart transplantation at 110 days. Results. After the TBI-reconstitution at 60 days, microchimerism was undetectable in BMC recipients at 110 days, significantly reduced in heart recipients, and least affected in liver recipients. Except in liver recipients, abrogation of LEW-specific nonreactivity was demonstrated by rejection of the priming grafts, or by rejection of the challenge heart grafts, and by in vitro immune assay. Conclusions. It is difficult to eliminate microchimerism in organ recipients once the donor cells have settled into tissue niches. Copyright © 2006 by Lippincott Williams & Wilkins

    Acquired immunologic tolerance: with particular reference to transplantation

    Get PDF
    The first unequivocally successful bone marrow cell transplantation in humans was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. Lancet 2: 1366–1369, 1968). This achievement was a direct extension of mouse models of acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (i.e. kidney) transplantation was accomplished precociously in humans (in 1959) before demonstrating its feasibility in any experimental model and in the absence of a defensible immunologic rationale. Due to the striking differences between the outcomes with the two kinds of procedure, the mechanisms of organ engraftment were long thought to differ from the leukocyte chimerism-associated ones of bone marrow transplantation. This and other concepts of alloengraftment and acquired tolerance have changed over time. Current concepts and their clinical implications can be understood and discussed best from the perspective provided by the life and times of Bob Good

    In Situ-Targeting of Dendritic Cells with Donor-Derived Apoptotic Cells Restrains Indirect Allorecognition and Ameliorates Allograft Vasculopathy

    Get PDF
    Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipient's dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11chi CD8α+ and CD8− DCs, but not by CD11cint plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-γ-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipient's DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipient's quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV

    AC magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles

    Get PDF
    Master of ScienceDepartment of Anatomy and PhysiologyDeryl L. TroyerThere is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. There is a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure. These results indicate that intratumoral administration of surface-modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, intravenous administration of these MNPs followed by AMF exposure attenuates melanomas, indicating that adequate amounts of TCPP-labeled stealth Fe/Fe3O4 nanoparticles can accumulate in murine melanoma after systemic delivery to allow effective magnetic hyperthermic therapy in a rodent tumor mode
    • …
    corecore