95 research outputs found

    Therapeutic potential of oleic acid nanovesicles prepared from petroleum ether extract of Sargassum binderi in streptozotocin–induced diabetic wound in Wistar rats

    Get PDF
    Purpose: To study the effectiveness of phyto-oleic acid nanovesicles (PONVs) developed from Sargassum binderi (an alga) in healing diabetic wound in a rat model, and to establish the associated changes in cytokine network.Methods: Phyto-extract was obtained from the whole plant of Sargassum binderi by Soxhlet extraction using petroleum ether as solvent. The crude extract was subjected to phytochemical analysis and used in the formulation of POVNs. The PONVs were formulated by entrapping petroleum ether extract of Sargassum binderi using the film hydration technique. Wound healing property was determined by measuring both pro-inflammatory and anti-inflammatory cytokines using enzyme-linked immunosorbent assay (ELISA).Results: Tannins and steroids were the major components of the petroleum ether extract of Sargassum binderi. Serum cytokine levels were increased after inducing diabetes and creating the wound. The serum levels of IL-2, TNF-α and IL-1β were 37.3 ± 3.3, 76.3 ± 5.2 and 3307.6 ± 350 pg/ml, respectively. Treatment with PONVs modulated the serum cytokine levels through significant decreases in serum IL-2, TNF-α, IL-1β levels, and significant elevation of serum IL-4.Conclusion: These results indicate that PONVs have promising potentials for application as topical treatment for diabetic wounds.Keywords: Brown algae, Sargassum binderi, Oleic acid nanovesicles, Diabetic wound, Cytokine

    Effects of dietary vitamin D3 levels on survival, mineralization, and skeletal development of gilthead seabream (Sparus aurata) larvae

    Get PDF
    Vitamin D is an essential fat soluble micronutrient that helps in growth, bone development, calcium homeostasis and other metabolic process. The study on effect of vitamin D3 in marine fish larvae were very scarce irrespective of species. The present study determines the impacts of dietary vitamin D3 on growth performance, calcium absorption, mineralization, and skeletal anomalies during the development of gilthead seabream (Sparus aurata) larvae was assessed until 47 days post hatching. Diets containing four levels of vitamin D3 (0, 25, 30, 384 μg kg−1 or 11.6, 1000, 1200, 15,360 IU kg−1) were formulated to determine the effect of vitamin D3 at deficient, excess, and optimum levels. The gilthead seabream larvae in the present study fed with this wide range of vitamin D3 presented a constant growth with all the diets but presented signs of toxicity in excess level, affecting the survival, calcium uptake, and bone biomarker mechanism in larvae, which resulted in increased skeletal anomalies and mortality. An increase of dietary vitamin D3 up to 384 μg kg−1 significantly raised the whole body vitamin D3 content, calcium, and phosphorus intake and increased the incidence of skeletal anomalies, particularly cranial anomalies. The appearance of skeletal anomalies in larvae fed 384 μg kg−1 vitamin D3 was in association with the upregulation of bmp2, alp, and oc gene expression. However, larvae fed 0, 25, 30 μg kg−1 vitamin D3 showed higher survival than the group fed 384 μg kg−1 vitamin D3. Meanwhile vitamin D3 deficient diet 0 μg kg−1 presented with lower mineralization rate and increase incidence of maxillary anomaly. Thus, the current study revealed the evidence of vitamin D3 deficiency as well as toxicity in gilthead seabream larvae during the developmental process and conclude that the recommended dietary vitamin D3 level for gilthead seabream larvae may range between 25 and 30 μg kg−1 which improves larval survival, calcium and phosphate level and vertebral mineralization with reduced incidence of skeletal anomalies in gilthead seabream larva

    Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex

    Full text link
    The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin

    Quality of amoxicillin/clavulanic acid oral formulations for intended veterinary use in the UK, Malaysia, Serbia and Thailand

    Get PDF
    © 2023 The Authors. Journal of Small Animal Practice published by John Wiley & Sons Ltd on behalf of British Small Animal Veterinary Association.This is an open access article under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Objectives: Amoxicillin/clavulanate is the most commonly used oral antimicrobial drug in companion animals. The objective of the study was to detect types and frequency of deficits in the quality of veterinary oral formulations of amoxicillin/clavulanate in various countries. Materials and Methods: In a prospective study with purposive sampling, amoxicillin/clavulanate tablet formulations for canine use were collected in four countries (wholesalers or veterinary practice) and shipped to a central bioanalytical laboratory. Twenty‐four samples were collected from the UK (nine), Malaysia (nine), Serbia (four) and Thailand (two), yielding 18 different formulations (10 veterinary). Packaging inspection, tablet disintegration and content assay were conducted (validated high‐performance liquid chromatography with ultra‐violet detection); content was acceptable when within the 90% to 120% pre‐specified range (US Pharmacopeia). Results: Secondary packaging was present for 13 of 24 samples and primary packaging integrity was verified for all but one sample. Amoxicillin trihydrate/potassium clavulanate label ratio was 4:1, except for three formulations (2:1). Tablet dose strength ranged from 250 to 625 mg. All formulations contained both analytes. For amoxicillin, two of 24 samples were out of specification with 72.8% (Malaysia) and 82.3% (Thailand) of labelled content. For clavulanate, four of 24 samples were out of specification with 46.9% (Serbia), 79.0% (UK), 84.3% (Serbia) and 86.5% (Thailand) of labelled content. One formulation (Thailand) failed for both analytes. Clinical Significance: Antimicrobial formulations of substandard quality have negative consequences for efficacy in patients and potentially promote antimicrobial resistance. There was evidence of substandard formulations in all countries, not only for amoxicillin but especially for clavulanate; this could compromise equitable access to acceptable quality essential veterinary medicines worldwide.Peer reviewe

    The Role of Physical Activity Prescription in Cardiovascular Disease Prevention Amongst South Asian Canadians

    Get PDF
    Unequivocal evidence suggests an increased prevalence of cardiovascular disease (CVD) amongst South Asian Canadians (SACs) compared to other ethnic cohorts, due to a combination of their unique cardiometabolic profile and environmental factors. This unfavorable CVD profile is characterized by an elevated risk of dyslipidemia, high apolipoprotein B/apolipoprotein A1 ratio, hypertension, glucose intolerance, type 2 diabetes mellitus, as well as increased BMI, body fat percentage, abdominal and visceral adiposity. Despite the overwhelming evidence for the effectiveness of physical activity (PA) in circumventing the onset of CVD and in the reduction of CVD risk factors, SACs are among the most physically inactive cohorts in Canada. This relates to a set of common and unique socio-cultural barriers, such as gender, beliefs and perceptions about illness, immigration, unfavorable PA environments, and their high prevalence of debilitating chronic diseases. Several strategies to improve PA participation rates in this high-risk population have been suggested, and include the implementation of culturally sensitive PA interventions, as well as clinician training in PA prescription through workshops that emphasize knowledge translation into clinical practice. Therefore, the purpose of this mini-review is to highlight and discuss: (1) the burden of heart disease in SACs (2) the cardiovascular benefits of PA for SACs; (3) factors affecting PA participation among SACs and how they can be addressed; (4) the impact of culturally sensitive PA prescription on CVD prevention; (5) barriers to culture-specific PA prescription by clinicians, and strategies to improve its use and impact

    Factors associated with worse lung function in cystic fibrosis patients with persistent staphylococcus aureus

    Get PDF
    Background Staphylococcus aureus is an important pathogen in cystic fibrosis (CF). However, it is not clear which factors are associated with worse lung function in patients with persistent S. aureus airway cultures. Our main hypothesis was that patients with high S. aureus density in their respiratory specimens would more likely experience worsening of their lung disease than patients with low bacterial loads. Methods Therefore, we conducted an observational prospective longitudinal multi-center study and assessed the association between lung function and S. aureus bacterial density in respiratory samples, co-infection with other CF-pathogens, nasal S. aureus carriage, clinical status, antibiotic therapy, IL-6- and IgG-levels against S. aureus virulence factors. Results 195 patients from 17 centers were followed; each patient had an average of 7 visits. Data were analyzed using descriptive statistics and generalized linear mixed models. Our main hypothesis was only supported for patients providing throat specimens indicating that patients with higher density experienced a steeper lung function decline (p<0.001). Patients with exacerbations (n = 60), S. aureus small-colony variants (SCVs, n = 84) and co-infection with Stenotrophomonas maltophilia (n = 44) had worse lung function (p = 0.0068; p = 0.0011; p = 0.0103). Patients with SCVs were older (p = 0.0066) and more often treated with trimethoprim/sulfamethoxazole (p = 0.0078). IL-6 levels positively correlated with decreased lung function (p<0.001), S. aureus density in sputa (p = 0.0016), SCVs (p = 0.0209), exacerbations (p = 0.0041) and co-infections with S. maltophilia (p = 0.0195) or A. fumigatus (p = 0.0496). Conclusions In CF-patients with chronic S. aureus cultures, independent risk factors for worse lung function are high bacterial density in throat cultures, exacerbations, elevated IL-6 levels, presence of S. aureus SCVs and co-infection with S. maltophilia

    Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii

    Get PDF
    Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depo-lymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites

    A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity

    Get PDF
    The timely delivery of membranous organelles and macromolecules to specific locations within the majority of eukaryotic cells depends on microtubule-based transport. Here, we describe a screening method to identify mutations that have a critical effect on intracellular transport and its regulation using mutagenesis, multicolor-fluorescence microscopy, and multiplex genome sequencing. This screen exploits the filamentous fungus Aspergillus nidulans, which has many of the advantages of yeast molecular genetics, but uses long-range microtubule-based transport in a manner more similar to metazoan cells. Using this method, we identified 7 mutants that represent novel alleles of components of the intracellular transport machinery: specifically, kinesin-1, cytoplasmic dynein, and the dynein regulators Lis1 and dynactin. The two dynein mutations identified in our screen map to dynein's AAA+ catalytic core. Single-molecule studies reveal that both mutations reduce dynein's velocity in vitro. In vivo these mutants severely impair the distribution and velocity of endosomes, a known dynein cargo. In contrast, another dynein cargo, the nucleus, is positioned normally in these mutants. These results reveal that different dynein functions have distinct velocity requirements

    Sustainability of biohydrogen as fuel: Present scenario and future perspective

    Get PDF
    corecore