90 research outputs found

    Use of human perivascular stem cells for bone regeneration

    Get PDF
    Human perivascular stem cells (PSCs) can be isolated in sufficient numbers from multiple tissues for purposes of skeletal tissue engineering(1-3). PSCs are a FACS-sorted population of 'pericytes' (CD146+CD34-CD45-) and 'adventitial cells' (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. PSCs, like MSCs, are able to undergo osteogenic differentiation, as well as secrete pro-osteogenic cytokines(1,2). In the present protocol, we demonstrate the osteogenicity of PSCs in several animal models including a muscle pouch implantation in SCID (severe combined immunodeficient) mice, a SCID mouse calvarial defect and a femoral segmental defect (FSD) in athymic rats. The thigh muscle pouch model is used to assess ectopic bone formation. Calvarial defects are centered on the parietal bone and are standardly 4 mm in diameter (critically sized)(8). FSDs are bicortical and are stabilized with a polyethylene bar and K-wires(4). The FSD described is also a critical size defect, which does not significantly heal on its own(4). In contrast, if stem cells or growth factors are added to the defect site, significant bone regeneration can be appreciated. The overall goal of PSC xenografting is to demonstrate the osteogenic capability of this cell type in both ectopic and orthotopic bone regeneration models

    The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells

    Get PDF
    The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation

    Mental Disorders in Megacities: Findings from the São Paulo Megacity Mental Health Survey, Brazil

    Get PDF
    Background: World population growth is projected to be concentrated in megacities, with increases in social inequality and urbanization-associated stress. São Paulo Metropolitan Area (SPMA) provides a forewarning of the burden of mental disorders in urban settings in developing world. The aim of this study is to estimate prevalence, severity, and treatment of recently active DSM-IV mental disorders. We examined socio-demographic correlates, aspects of urban living such as internal migration, exposure to violence, and neighborhood-level social deprivation with 12-month mental disorders. Methods and Results: A representative cross-sectional household sample of 5,037 adults was interviewed face-to-face using the WHO Composite International Diagnostic Interview (CIDI), to generate diagnoses of DSM-IV mental disorders within 12 months of interview, disorder severity, and treatment. Administrative data on neighborhood social deprivation were gathered. Multiple logistic regression was used to evaluate individual and contextual correlates of disorders, severity, and treatment. Around thirty percent of respondents reported a 12-month disorder, with an even distribution across severity levels. Anxiety disorders were the most common disorders (affecting 19.9%), followed by mood (11%), impulse-control (4.3%), and substance use (3.6%) disorders. Exposure to crime was associated with all four types of disorder. Migrants had low prevalence of all four types compared to stable residents. High urbanicity was associated with impulse-control disorders and high social deprivation with substance use disorders. Vulnerable subgroups were observed: women and migrant men living in most deprived areas. Only one-third of serious cases had received treatment in the previous year. Discussion: Adults living in São Paulo megacity had prevalence of mental disorders at greater levels than similar surveys conducted in other areas of the world. Integration of mental health promotion and care into the rapidly expanding Brazilian primary health system should be strengthened. This strategy might become a model for poorly resourced and highly populated developing countries

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi

    Get PDF
    Contains fulltext : 136405.pdf (publisher's version ) (Open Access)The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary 'arms race' may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors

    The Tetrahymena thermophila Phagosome Proteome

    No full text
    In vertebrates, phagocytosis occurs mainly in specialized cells of the immune system and serves as a primary defense against invading pathogens, but it also plays a role in clearing apoptotic cells and in tissue remodeling during development. In contrast, unicellular eukaryotes, such as the ciliate Tetrahymena thermophila, employ phagocytosis to ingest and degrade other microorganisms to meet their nutritional needs. To learn more about the protein components of the multistep process of phagocytosis, we carried out an analysis of the Tetrahymena phagosome proteome. Tetrahymena cells were fed polystyrene beads, which allowed for the efficient purification of phagosomes. The protein composition of purified phagosomes was then analyzed by multidimensional separation coupled with tandem mass spectrometry. A total of 453 peptides were identified that resulted in the identification of 73 putative phagosome proteins. Twenty-eight of the proteins have been implicated in phagocytosis in other organisms, indicating that key aspects of phagocytosis were conserved during evolution. Other identified proteins have not previously been associated with phagocytosis, including some of unknown function. Live-cell confocal fluorescence imaging of Tetrahymena strains expressing green fluorescent protein-tagged versions of four of the identified phagosome proteins provided evidence that at least three of the proteins (including two with unknown functions) are associated with phagosomes, indicating that the bulk of the proteins identified in the analyses are indeed phagosome associated

    Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression

    No full text
    Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. We recently reported that Ca2+ handling, crucial to excitation-contraction coupling of hESC-derived CMs (hESC-CMs), is functional but immature. Such immature properties as smaller cytosolic Ca2+ transient amplitudes, slower kinetics, and reduced Ca2+ content of sarcoplasmic reticulum (SR) can be attributed to the differential developmental expression profiles of specific Ca2+ handling and regulatory proteins in hESC-CMs and their adult counterparts. In particular, calsequestrin (CSQ), the most abundant, high-capacity but low-affinity, Ca2+-binding protein in the SR that is anchored to the ryanodine receptor, is robustly expressed in adult CMs but completely absent in hESC-CMs. Here we hypothesized that gene transfer of CSQ in hESC-CMs suffices to induce functional improvement of SR. Transduction of hESC-CMs by the recombinant adenovirus Ad-CMV-CSQ-IRES-GFP (Ad-CSQ) significantly increased the transient amplitude, upstroke velocity, and transient decay compared with the control Ad-CMV-GFP (Ad-GFP) and Ad-CMV-CSQΔ-IRES-GFP (Ad-CSQΔ, which mediated the expression of a nonfunctional, truncated version of CSQ) groups. Ad-CSQ increased the SR Ca2+ content but did not alter L-type Ca2+ current. Pharmacologically, untransduced wild-type, Ad-GFP-, Ad-CSQΔ-, and Ad-CSQ-transduced hESC-CMs behaved similarly. Whereas ryanodine significantly reduced the Ca2+ transient amplitude and slowed the upstroke, thapsigargin slowed the decay. Neither triadin nor junctin was affected. We conclude that CSQ expression in hESC-CMs facilitates Ca2+ handling maturation. Our results shed insights into the suitability of hESC-CMs for therapies and as certain heart disease models for drug screening
    corecore