350 research outputs found

    Impact of response evaluation for resectable esophageal adenocarcinoma – A retrospective cohort study

    Get PDF
    AbstractIntroduction: The standard treatment concept in patients with locally advanced adenocarcinoma of the esophagogastric junction is neoadjuvant chemotherapy, followed by tumor resection in curative intent. Response evaluation of neoadjuvant chemotherapy using histopathological tumor regression grade (TRG) has been shown to be a prognostic factor in patients with esophageal cancer. Methods: We assessed the impact of the various methods of response control and their value in correlation to established prognostic factors in a cohort of patients with adenocarcinoma at the gastroesophageal junction treated by neoadjuvant chemotherapy. Results: After neoadjuvant chemotherapy, in 56 consecutive patients with locally advanced (T2/3/4 and/or N0/N1) esophageal adenocarcinoma an oncologic tumor resection for curative intent was performed. Median follow-up was 44 months. Histopathological tumor stages were stage 0 in 10.7%, stage I in 17.9%, stage II in 21.4%, stage III in 41.1% and stage IV 8.9%. The 3-year overall survival (OS) rate was 30.3%. In univariate analysis, ypN-status, histopathological tumor stage and tumor regression grade correlated significantly with overall survival (p = 0.022, p = 0.001, p = 0.035 respectively). Clinical response evaluation could not predict response and overall survival (p = 0.556, p = 0.254 respectively). Conclusion: After preoperative chemotherapy, outcomes of esophageal carcinoma are best predicted utilizing pathological tumor stage and histologic tumor regression. Clinical response assessments were not useful for guidance of treatment

    Growth and dislocation studies of β-HMX

    Get PDF
    Background: The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in “hot-spot” detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). Results: The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Conclusions: Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]

    State of the Art on Neural Rendering

    Get PDF
    Efficient rendering of photo-realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo-realistic images from hand-crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo-realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photo-realistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. This state-of-the-art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems

    Lessons Learned from Creating a Mobile Version of an Educational Board Game to Increase Situational Awareness

    Get PDF
    This paper reports on an iterative design process for a serious game, which aims to raise situational awareness among different stakeholders in a logistics value chain by introducing multi-user role-playing games. It does so in several phases: After introducing the field of logistics as a problem domain for an educational challenge, it firstly describes the design of an educational board game for the field of disruption handling in logistics processes. Secondly, it de-scribes how the board game can be realized in an open-source mobile serious games platform and identifies lessons learned based on advantages and issues found. Thirdly, it derives requirements for a re-design of the mobile game and finally draws conclusions.SALOM

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Professional Learning Through Everyday Work: How Finance Professionals Self-Regulate Their Learning

    Get PDF
    Professional learning is a critical component of ongoing improvement and innovation and the adoption of new practices in the workplace. Professional learning is often achieved through learning embedded in everyday work tasks. However, little is known about how professionals self-regulate their learning through regular work activities. This paper explores how professionals in the finance sector (n-30) self-regulate their learning through day-to-day work. Analysis focuses on three sub-processes of self-regulated learning that have been identified as significant predictors of good self-regulated learning at work. A key characteristic of good self-regulation is viewing learning as a form of long-term, personalised self-improvement. This study provides a foundation for future policy and planning in organisations aiming to encourage self-regulated learning

    The learning styles neuromyth:when the same term means different things to different teachers

    Get PDF
    Alexia Barrable - ORCID: 0000-0002-5352-8330 https://orcid.org/0000-0002-5352-8330Although learning styles (LS) have been recognised as a neuromyth, they remain a virtual truism within education. A point of concern is that the term LS has been used within theories that describe them using completely different notions and categorisations. This is the first empirical study to investigate education professionals’ conceptualisation, as well as means of identifying and implementing LS in their classroom. A sample of 123 education professionals were administered a questionnaire consisting both closed- and open-ended questions. Responses were analysed using thematic analysis. LS were found to be mainly conceptualised within the Visual-Auditory-(Reading)-Kinaesthetic (VAK/VARK) framework, as well as Gardner’s multiple intelligences. Moreover, a lot of education professionals confused theories of learning (e.g., behavioural or cognitive theories) with LS. In terms of identifying LS, educators reported using a variety of methods, spanning from observation and everyday contact to the use of tests. The ways LS were implemented in the classroom were numerous, comprising various teaching aids, participatory techniques and motor activities. Overall, we argue that the extended use of the term LS gives the illusion of a consensus amongst educators, when a closer examination reveals that the term LS is conceptualised, identified and implemented idiosyncratically by different individuals. This study aims to be of use to pre-service and in-service teacher educators in their effort to debunk the neuromyth of LS and replace it with evidence-based practices.https://doi.org/10.1007/s10212-020-00485-236pubpub

    The serious games ecosystem: Interdisciplinary and intercontextual praxis

    Get PDF
    This chapter will situate academia in relation to serious games commercial production and contextual adoption, and vice-versa. As a researcher it is critical to recognize that academic research of serious games does not occur in a vaccum. Direct partnerships between universities and commercial organizations are increasingly common, as well as between research institutes and the contexts that their serious games are deployed in. Commercial production of serious games and their increased adoption in non-commercial contexts will influence academic research through emerging impact pathways and funding opportunities. Adding further complexity is the emergence of commercial organizations that undertake their own research, and research institutes that have inhouse commercial arms. To conclude, we explore how these issues affect the individual researcher, and offer considerations for future academic and industry serious games projects

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
    corecore