396 research outputs found

    Casimir force calculations near the insulator-conductor transition in gold thin films

    Full text link
    We present theoretical calculations of the Casimir force for Au thin films near the insulator-conductor transition that has been observed experimentally. The dielectric function of the Au thin films is described by the Drude-Smith model. The parameters needed to model the dielectric function such as the relaxation time, plasma frequency and the backscattering constant depend on the thickness of the film. The Casimir force decreases as the film thickness decreases until it reaches a minimum after which the force increases again. The minimum of the force coincides with the critical film thickness where a percolation conductor-insulator occurs.Comment: 5 figures, 1 tabl

    Casimir-like tunneling-induced electronic forces

    Full text link
    We study the quantum forces that act between two nearby conductors due to electronic tunneling. We derive an expression for these forces by calculating the flux of momentum arising from the overlap of evanescent electronic fields. Our result is written in terms of the electronic reflection amplitudes of the conductors and it has the same structure as Lifshitz's formula for the electromagnetically mediated Casimir forces. We evaluate the tunneling force between two semiinfinite conductors and between two thin films separated by an insulating gap. We discuss some applications of our results.Comment: 8 pages, 3 figs, submitted to Proc. of QFEXT'05, to be published in J. Phys.

    Influence of slab thickness on the Casimir force

    Full text link
    We calculate the Casimir force between slabs of finite thickness made of intrinsic and doped silicon with different concentration of carriers and compare the results to those obtained for gold slabs. We use the Drude and the plasma models to describe the dielectric function for the carriers in doped Si. We discuss the possibility of experimentally testing the appropriateness of these models. We also investigate the influence of finite thickness on VO2VO_2, which has recently been proposed for Casimir effect measurements testing the metal-insulator transition.Comment: 10 pages, 10 figures, 2 tables, v2, typos correcte

    Microscopic origin of the conducting channels in metallic atomic-size contacts

    Full text link
    We present a theoretical approach which allows to determine the number and orbital character of the conducting channels in metallic atomic contacts. We show how the conducting channels arise from the atomic orbitals having a significant contribution to the bands around the Fermi level. Our theory predicts that the number of conducting channels with non negligible transmission is 3 for Al and 5 for Nb one-atom contacts, in agreement with recent experiments. These results are shown to be robust with respect to disorder. The experimental values of the channels transmissions lie within the calculated distributions.Comment: 11 pages, 4 ps-figures. Submitted to Phys. Rev. Let

    Regeneration in selected Cucurbita spp. germplasm

    Full text link
    Gisbert Domenech, MC.; Picó Sirvent, MBN.; Nuez Viñals, F. (2011). Regeneration in selected Cucurbita spp. germplasm. Report- Cucurbit Genetics Cooperative. 33-34:53-54. http://hdl.handle.net/10251/62926S535433-3

    Single-channel transmission in gold one-atom contacts and chains

    Full text link
    We induce superconductivity by proximity effect in thin layers of gold and study the number of conduction channels which contribute to the current in one-atom contacts and atomic wires. The atomic contacts and wires are fabricated with a Scanning Tunneling Microscope. The set of transmission probabilities of the conduction channels is obtained from the analysis of the I(V)I(V) characteristic curve which is highly non-linear due to multiple Andreev reflections. In agreement with theoretical calculations we find that there is only one channel which is almost completely open.Comment: 4 pages, 2 figures. To be published in Phys. Rev. B, Rapid Communications (2003

    Connective neck evolution and conductance steps in hot point contacts

    Full text link
    Dynamic evolution of the connective neck in Al and Pb mechanically controllable break junctions was studied during continuous approach of electrodes at bias voltages V_b up to a few hundred mV. A high level of power dissipation (10^-4 - 10^-3 W) and high current density (j > 10^10 A/cm^2) in the constriction lead to overheating of the contact area, electromigration and current-enhanced diffusion of atoms out of the "hot spot". At a low electrode approach rate (10 - 50 pm/s) the transverse dimension of the neck and the conductance of the junction depend on V_b and remain nearly constant over the approach distance of 10 - 30 nm. For V_b > 300 mV the connective neck consists of a few atoms only and the quantum nature of conductance manifests itself in abrupt steps and reversible jumps between two or more levels. These features are related to an ever changing number of individual conductance channels due to the continuous rearrangement in atomic configuration of the neck, the recurring motion of atoms between metastable states, the formation and breaking of isolated one-atom contacts and the switching between energetically preferable neck geometries.Comment: 21 pages 10 figure

    Effects of sports drinks on the maintenance of physical performance during 3 tennis matches: A randomized controlled study

    Get PDF
    Background: Tennis tournaments often involve playing several consecutive matches interspersed with short periods of recovery. Objective: The objective of this study was firstly to assess the impact of several successive tennis matches on the physical performance of competitive players and secondly to evaluate the potential of sports drinks to minimize the fatigue induced by repeated matches. Methods: This was a crossover, randomized controlled study. Eight male regionally-ranked tennis players participated in this study. Players underwent a series of physical tests to assess their strength, speed, power and endurance following the completion of three tennis matches each of two hours duration played over three consecutive half-days (1.5 day period for each condition). In the first condition the players consumed a sports drink before, during and after each match; in the second, they drank an identical volume of placebo water. The results obtained were compared with the third 'rest' condition in which the subjects did not play any tennis. Main outcomes measured were maximal isometric strength and fatigability of knee and elbow extensors, 20-m sprint speed, jumping height, specific repeated sprint ability test and hand grip strength. Results: The physical test results for the lower limbs showed no significant differences between the three conditions. Conversely, on the upper limbs the EMG data showed greater fatigue of the triceps brachii in the placebo condition compared to the rest condition, while the ingestion of sports drinks attenuated this fatigue. Conclusions: This study has demonstrated for the first time that, when tennis players are adequately hydrated and ingest balanced meals between matches, then no large drop in physical performance is observed even during consecutive competitive matches
    corecore