11 research outputs found

    Abnormal Splicing of NEDD4 in Myotonic Dystrophy Type 2 Possible Link to Statin Adverse Reactions

    Get PDF
    Myotonic dystrophy type 2 (DM2) is a multisystemic disorder caused by a (CCTG)n repeat expansion in intron 1 of CNBP. Transcription of the repeats causes a toxic RNA gain of function involving their accumulation in ribonuclear foci. This leads to sequestration of splicing factors and alters pre-mRNA splicing in a range of downstream effector genes, which is thought to contribute to the diverse DM2 clinical features. Hyperlipidemia is frequent in DM2 patients, but the treatment is problematic because of an increased risk of statin-induced adverse reactions. Hypothesizing that shared pathways lead to the increased risk, we compared the skeletal muscle expression profiles of DM2 patients and controls with patients with hyperlipidemia on statin therapy. Neural precursor cell expressed, developmentally downregulated-4 (NEDD4), an ubiquitin ligase, was one of the dysregulated genes identified in DM2 patients and patients with statin-treated hyperlipidemia. In DM2 muscle, NEDD4 mRNA was abnormally spliced, leading to aberrant NEDD4 proteins. NEDD4 was down-regulated in persons taking statins, and simvastatin treatment of C2C12 cells suppressed NEDD4 transcription. Phosphatase and tensin homologue (PTEN), an established NEDD4 target, was increased and accumulated in highly atrophic DM2 muscle fibers. PTEN ubiquitination was reduced in DM2 myofibers, suggesting that the NEDD4-PTEN pathway is dysregulated in DM2 skeletal muscle. Thus, this pathway may contribute to the increased risk of statin-adverse reactions in patients with DM2

    (CCUG)n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis

    Get PDF
    The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions - (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106). Expression of noncoding (CCUG)106, but not (CCUG)16, in muscle and retinal cells led to the formation of ribonuclear foci and mis-splicing of genes implicated in DM pathology. Mis-splicing could be rescued by co-expression of human MBNL1, but not by CUGBP1 (CELF1) complementation. Flies with (CCUG)106 displayed strong disruption of external eye morphology and of the underlying retina. Furthermore, expression of (CCUG)106 in developing retinae caused a strong apoptotic response. Inhibition of apoptosis rescued the retinal disruption in (CCUG)106 flies. Finally, we tested two chemical compounds that have shown therapeutic potential in DM1 models. Whereas treatment of (CCUG)106 flies with pentamidine had no effect, treatment with a PKR inhibitor blocked both the formation of RNA foci and apoptosis in retinae of (CCUG)106 flies. Our data indicate that expression of expanded (CCUG)DM2 repeats is toxic, causing inappropriate cell death in affected fly eyes. Our Drosophila DM2 model might provide a convenient tool for in vivo drug screening

    Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset

    Get PDF
    In myotonic dystrophy type 1 (DM1), somatic mosaicism of the (CTG)n repeat expansion is age-dependent, tissue-specific and expansion-biased. These features contribute toward variation in disease severity and confound genotype-to-phenotype analyses. To investigate how the (CTG)n repeat expansion changes over time, we collected three longitudinal blood DNA samples separated by 8–15 years and used small pool and single-molecule PCR in 43 DM1 patients. We used the lower boundary of the allele length distribution as the best estimate for the inherited progenitor allele length (ePAL), which is itself the best predictor of disease severity. Although in most patients the lower boundary of the allele length distribution was conserved over time, in many this estimate also increased with age, suggesting samples for research studies and clinical trials should be obtained as early as possible. As expected, the modal allele length increased over time, driven primarily by ePAL, age-at-sampling and the time interval. As expected, small expansions <100 repeats did not expand as rapidly as larger alleles. However, the rate of expansion of very large alleles was not obviously proportionally higher. This may, at least in part, be a result of the allele length-dependent increase in large contractions that we also observed. We also determined that individual-specific variation in the increase of modal allele length over time not accounted for by ePAL, age-at-sampling and time was inversely associated with individual-specific variation in age-at-onset not accounted for by ePAL, further highlighting somatic expansion as a therapeutic target in DM1.Muscular Dystrophy Association/[MDA200568]/MDA/Estados UnidosMinisterio de Ciencia, Tecnología y Telecomunicaciones/[]/MICITT/Costa RicaConsejo Nacional para Investigaciones Científicas y Tecnológicas/[]/CONICIT/Costa RicaUniversidad de Costa Rica/[]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto de Investigaciones en Salud (INISA

    Myotonic dystrophy type 1 (DM1) clinical subtypes and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent

    No full text
    Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation f lanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites f lanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.Muscular Dystrophy Association/[MDA200568]/MDA/Estados UnidosUniversidad de Costa Rica/[742-A8-306]/UCR/Costa RicaNational Cancer Institute/[P30 CA016672]/NCI/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto de Investigaciones en Salud (INISA

    Expression of RNA CCUG Repeats Dysregulates Translation and Degradation of Proteins in Myotonic Dystrophy 2 Patients

    Get PDF
    Myotonic dystrophy 2 (DM2) is a multisystem skeletal muscle disease caused by an expansion of tetranucleotide CCTG repeats, the transcription of which results in the accumulation of untranslated CCUG RNA. In this study, we report that CCUG repeats both bind to and misregulate the biological functions of cytoplasmic multiprotein complexes. Two CCUG-interacting complexes were subsequently purified and analyzed. A major component of one of the complexes was found to be the 20S catalytic core complex of the proteasome. The second complex was found to contain CUG triplet repeat RNA-binding protein 1 (CUGBP1) and the translation initiation factor eIF2. Consistent with the biological functions of the 20S proteasome and the CUGBP1-eIF2 complexes, the stability of short-lived proteins and the levels of the translational targets of CUGBP1 were shown to be elevated in DM2 myoblasts. We found that the overexpression of CCUG repeats in human myoblasts from unaffected patients, in C2C12 myoblasts, and in a DM2 mouse model alters protein translation and degradation, similar to the alterations observed in DM2 patients. Taken together, these findings show that RNA CCUG repeats misregulate protein turnover on both the levels of translation and proteasome-mediated protein degradation

    Mutant (CCTG)n Expansion Causes Abnormal Expression of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy Type 2

    No full text
    The mutation that underlies myotonic dystrophy type 2 (DM2) is a (CCTG)n expansion in intron 1 of zinc finger protein 9 (ZNF9). It has been suggested that ZNF9 is of no consequence for disease pathogenesis. We determined the expression levels of ZNF9 during muscle cell differentiation and in DM2 muscle by microarray profiling, real-time RT-PCR, splice variant analysis, immunofluorescence, and Western blotting. Our results show that in differentiating myoblasts, ZNF9 protein was localized primarily to the nucleus, whereas in mature muscle fibers, it was cytoplasmic and organized in sarcomeric striations at the Z-disk. In patients with DM2, ZNF9 was abnormally expressed. First, there was an overall reduction in both the mRNA and protein levels. Second, the subcellular localization of the ZNF9 protein was somewhat less cytoplasmic and more membrane-bound. Third, our splice variant analysis revealed retention of intron 3 in an aberrant isoform, and fourth quantitative allele-specific expression analysis showed the persistence of intron 1 sequences from the abnormal allele, further suggesting that the mutant allele is incompletely spliced. Thus, the decrease in total expression appears to be due to impaired splicing of the mutant transcript. Our data indicate that ZNF9 expression in DM2 patients is altered at multiple levels. Although toxic RNA effects likely explain overlapping phenotypic manifestations between DM1 and DM2, abnormal ZNF9 levels in DM2 may account for the differences in DM1
    corecore