1,374 research outputs found

    The Mullins effect in the wrinkling behavior of highly stretched thin films

    Get PDF
    Recent work demonstrates that finite-deformation nonlinear elasticity is essential in the accurate modeling of wrinkling in highly stretched thin films. Geometrically exact models predict an isola-center bifurcation, indicating that for a bounded interval of aspect ratios only, stable wrinkles appear and then disappear as the macroscopic strain is increased. This phenomenon has been verified in experiments. In addition, recent experiments revealed the following striking phenomenon: For certain aspect ratios for which no wrinkling occurred upon the first loading, wrinkles appeared during the first unloading and again during all subsequent cyclic loading. Our goal here is to present a simple pseudo-elastic model, capturing the stress softening and residual strain observed in the experiments, that accurately predicts wrinkling behavior on the first loading that differs from that under subsequent cyclic loading. In particular for specific aspect ratios, the model correctly predicts the scenario of no wrinkling during first loading with wrinkling occurring during unloading and for all subsequent cyclic loading.Comment: 15 pages, 9 figure

    How river rocks round: resolving the shape-size paradox

    Get PDF
    River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.Comment: 11 pages, 5 figure

    Exploratory reference intervals on hematology and cellular immune system of multiparous Large White sows

    Get PDF
    AbstractThere is significant lack of basic hematologic and immunological data in adult sows. Therefore, aim of this study was to provide respective reference intervals. 32 clinically healthy multiparous Large White sows aged 33.5±9.6months and all of them two months postpartum were included in this study. Mean erythrocyte count was 5.5±0.7×106/μl and total leukocyte count was 12.1±2.1×103/μl. Proportion of lymphocytes was 44.7±10.2% and of neutrophils 41.6±11.0%. The ratio of naïve T helper (Th) cells to memory Th cells was 1:3.1 and the ratio of Th cells to cytotoxic T cells (CTLs) was 1:4.2. Proportions of regulatory T cells, NK cells, and CD21+ B cells were lower (3.1, 2.6, and 6.0%) than those of memory Th cells ranging from 8.8 to 27.5% depending on the activation status and CTLs with 37.3%. γδ T cells were found at comparably high numbers (19.1%). Flow cytometric measurement of intracellular cytokines in PBMCs revealed marginal levels for IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-12p35, but remarkable levels for TNF-α and IFN-γ. Highest mRNA levels were found for IL-1, IL-10, and TNF-α, with TNF-α showing the least inter-individual variation

    Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine KrasG12D-induced skin carcinogenesis in vivo

    Get PDF
    Background The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic KrasG12D mice with ablation of Notch1 and/or Notch2. Methodology/Principal Findings Surprisingly, mice with activated KrasG12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. Conclusions/Significance Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors

    Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure

    Get PDF
    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μ\mum silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 μ\mum absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.Comment: 16 pages, 13 figure

    The Use of Statistics in Experimental Physics

    Full text link
    Most mathematicians are aware of the importance of statistics in biological sciences, business, and economics, but are less aware that statistics is used every day in experimental physics. This paper gives three interesting examples of how statistics plays a vital role in physics. These examples use the basic statistical tools of residuals analysis and goodness of fit
    corecore